

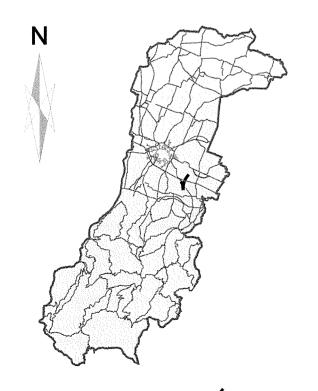
PROVINCIA DI MODENA

Area Lavori Pubblici

Direttore Ing. Alessandro Manni

Lavori speciali e Manutenzione opere Pubbliche

telefono 059 209 623 fax 059 343 706
viale Jacopo Barozzi 340, 41124 Modena c.f. e p.i. 01375710363
centralino 059 209 111 www.provincia.modena.it provinciadimodena@cert.provincia.modena.it
Servizio Certificato UNI EN ISO 9001:2008 - Registrazione N. 3256 -A-


S.P. n° 623 DEL PASSO BRASA

PROGETTO PILOTA PER L'ATTUAZIONE DI UN PIANO INTEGRATO DI INTERVENTI PER IL MIGLIORAMENTO DELLA SICUREZZA STRADALE SUL TERRITORIO PROVINCIALE MODENESE

ADEGUAMENTO E MESSA IN SICUREZZA TRATTO SPILAMBERTO-MODENA SUD

PROGETTO DEFINITIVO-ESECUTIVO

RIFERIMENTO ELABORATO								
PE002.c		RELAZIONE SISMICA						
PROT. n°	40904	SCALA			DAT	A Otto	bre 2018	
CL.	11-15-02	revisione	data	descrizione		redatto	controllato	approvato
DEL	30/10/2018							
FASC. 2	5.1 sub							

RESPONSABILE DEL PROCEDIMENTO

Dott. Luca Rossi

PROGETTISTI

Dott. Ing. Paola Rossi Geom. Walter Stella

COLLABORATORI ALLA PROGETTAZIONE,

Geom. Fabio Rossi

CONSULENTE GEOLOGICO

Dott. Geol. Antonio Gatti

COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE

Dott. Ing. Paola Rossi

ubicazione intervento

INDICE GENERALE

1. PEF	RICOLOSITA' SISMICA DI BASE E LOCALE	1
	a. Sismicità delle aree di interesse	1
	b. Sismicità storica delle aree di intervento	2
	c. Definizione dell'azione sismica	5
	d. Individuazione della pericolosità sismica del sito	6
	e. Valutazione del "Rischio sismico"	16
	f. Definizione delle categorie di sottosuolo ai fini sismici	17
2. CO	NSIDERAZIONI CONCLUSIVE	43
3. ALI	LEGATI	44

1. PERICOLOSITA' SISMICA DI BASE E LOCALE

a. Sismicità delle aree di interesse

Allo stato attuale la normativa di riferimento in materia sismica risulta essere il D.M. 14 gennaio 2008 recante "norme tecniche per le costruzioni", entrata in vigore a partire dal 1 luglio 2009.

La classificazione sismica dei comuni della regione Emilia-Romagna introdotta ai sensi del punto 3 dell'Allegato 1 dell'Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 maggio 2003, prevede che il territorio nazionale sia suddiviso in quattro zone sismiche, caratterizzate da quattro diversi valori di accelerazione (a_g).

Nell'Ordinanza del Presidente del Consiglio dei Ministri n. 3519 del 28 aprile 2006 "Criteri generali per l'individuazione delle zone sismiche e per la formulazione degli elenchi delle medesime zone" all'allegato 1.A" sono individuate quattro zone sismiche orizzontale massima convenzionale su suolo di tipo A, ai quali ancorare lo spettro di risposta elastico.

Ciascuna zona è individuata mediante valori di accelerazione massima al suolo a_g , con probabilità di superamento del 10% in 50 anni, riferiti a suoli rigidi caratterizzati da $Vs_{30} > 800 \, \text{m/s}$ secondo lo schema seguente. I valori di accelerazione delle quattro zone sismiche sono maggiormente specificati rispetto all' Ordinanza del Presidente del Consiglio dei Ministri n. 3274 secondo la schema di seguito proposto (tabella 1.1):

Tabella 1.1: Valori di accelerazione al suolo a_g

Zona	Accelerazione con probabilità di superamento pari al 10% in 50 anni (ag) – OPCM 3519	Accelerazione orizzontale massima convenzionale di ancoraggio dello spettro di risposta elastico (ag) – OPCM 3472
1	$0.25 < a_g \le 0.35 g$	0.35 _g
2	$0.15 < a_g \le 0.25 g$	0.25 _g
3	$0.05 < a_g \le 0.15_g$	0.15 _g
4	≤ 0.05 g	0.05 g

Di seguito si riportano le classificazioni della sismicità dei comuni interessati dagli interventi in base alle vecchie normative e ovviamente anche in base alla nuova e vigente classificazione proposta dall'OPCM 3274/2003 e s.m.i (tabella 1.2).

Tabella 1.2: Classificazione della sismicità del comune e valore dell'accelerazione al suolo ag

Comune	Classificazione sismica (Decreti fino al 1984)	Classificazione sismica OPCM 3274/2003	\mathbf{a}_{g}
Spilamberto	n.c.	3	0.15 g

b. Sismicità storica delle aree di intervento

Le osservazioni e i dati sismologici storici e strumentali attualmente disponibili indicano che, relativamente alla sismicità nazionale, la provincia di Modena è interessata da una sismicità di livello medio e medio - basso, con terremoti storici che più volte hanno raggiunto intensità pari al VII - VIII grado della scala MCS (Mercalli – Cancani – Sieberg).

In Fig. 1 è riportata la localizzazione dei principali terremoti storici (per classi di magnitudo) che hanno interessato il territorio dell'Emilia-Romagna.

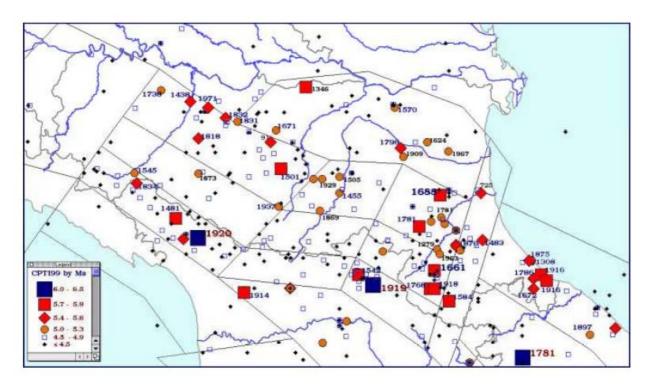


Figura 1 — Carta degli epicentri dei principali terremoti storici che hanno interessato l'Emilia-Romagna (per classi di magnitudo; da CPTI99) con indicazione delle zone sismogenetiche ZS4. L'areale della Provincia di Modena è facilmente individuabile grazie al tracciato del F. Panaro.

La sismicità non è omogeneamente diffusa su tutto il territorio provinciale ma si concentra principalmente lungo il margine appenninico-padano, nel medio e alto Appennino e nel settore occidentale della pianura.

L'attività sismica lungo il margine appenninico-padano è presumibilmente legata al fronte della struttura nota come thrust pedeappenninico (Boccaletti et al., 1985; Boccaletti et al., 2004) (Fig. 13).

Viceversa l'attività sismica della zona occidentale della pianura è a sua volta dovuta all'attività delle strutture sepolte della Pianura Padana quali le Pieghe Ferraresi (dorsale sepolta che forma un arco tra Reggio Emilia e Ravenna) e le Pieghe Emiliane (Pieri & Groppi, 1981).

Infine la sismicità dell'alto Appennino è dovuta sia a strutture superficiali e del basamento dell'Appennino modenese (Boccaletti et al., 2004), sia alla sismicità del vicino areale sismogenetico della Garfagnana, capace di generare terremoti anche di magnitudo superiore a 6.

A 57 4

Per maggiori informazioni sul quadro sismotettonico si rimanda a:

Spilamberto

- "Carta Sismotettonica della Regione Emilia-Romagna" (Boccaletti et al., 2004)
- Database of Individual Seismogenetic Sources (DISS 3.0) dell'INGV (informazioni su strutture sismogenetiche);
- STUDIO DELLA PERICOLOSITÀ SISMICA DELLA PROVINCE DI MODENA E REGGIO EMILIA – Università degli Studi di Modena e Reggio Emilia – Dipartimento di Scienze della Terra, 2001.

Da quanto sopra emerge chiaramente come l'attività sismica del territorio provinciale sia tutt'altro che trascurabile.

Nelle tabelle 1, 2 e 3 sono riportati i dati storici del comune di Spilamberto, definiti nel Gruppo di lavoro CPTI (2015) Catalogo Parametrico dei Terremoti Italiani, versione 2015 (CPTI15), INGV, Bologna con aggiornamento DBMI15 (Release v1.5) reperibile all'indirizzo web http://emidius.mi.ingv.it/CPTI15-DBMI15/

opiidii	iberto					1
PlaceID		IT_3917	73			
Coordinate (lat, lon) 44.533		44.533,	11.024			
Comune	(ISTAT 2015)	Spilamb	perto			
Provincia		Modena	F.			
Regione		Emilia-F	Romagna			
Numero d	di eventi riportati	22				
Effetti			In occasione del terremoto del			
Int.	Anno Me Gi Ho	Mi Se	Area epicentrale	NMDP	Io	Mw
F		20 48	Pianura Padana	78	6	5.0
3	₽ 1887 02 23	05 21 5	Liguria occidentale	1511	9	6.2
5	₫ 1904 02 25	18 47 5	Reggiano	62	6	4.8
5	₽ 1904 06 10	11 15 2	Frignano	101	6	4.8
3-4	ළු 1908 06 02	22 30	Frignano	18	4-5	4.5
5-6	₽ 1909 01 13	00 45	Emilia Romagna orientale	867	6-7	5.3
3	₽ 1930 10 24	00 52	Appennino tosco-emiliano	12	4	3.9
3	₽ 1930 10 26	07 14	Appennino tosco-emiliano	14	4	4.2
4	₽ 1930 10 26	07 31	Modenese	11	4	4.1
2	₽ 1931 06 10	17 02	Modenese	14	4	4.5
4	₽ 1934 09 18	09 37	Vignola	6	4	3.9
4	₽ 1957 08 27	11 54	Appennino modenese	58	5	4.7
NE	₽ 1967 04 03	16 36 1	Reggiano	45	5	4.4
3	ළු 1983 11 09	16 29 5	Parmense	850	6-7	5.0
NF	ළු 1988 03 15	12 03 1	Reggiano	160	6	4.5
3-4	ළු 1992 04 17	11 59 0	Appennino bolognese	56	4-5	4.1
NF	₽ 1995 10 10	06 54 2	Lunigiana	341	7	4.8
5		09 55 5	Pianura emiliana	135	7	5.3
NF	₽ 1996 12 16	09 09 5	Pianura emiliana	115	5-6	4.0
NF	₽ 1998 02 21	02 21 1	Pianura emiliana	104	5	3.9
NE	₽ 2000 06 18	07 42 0	Pianura emiliana	304	5-6	4.4
	- 17					

Tabella 2: Storia sismica del comune di Spilamberto (MO).

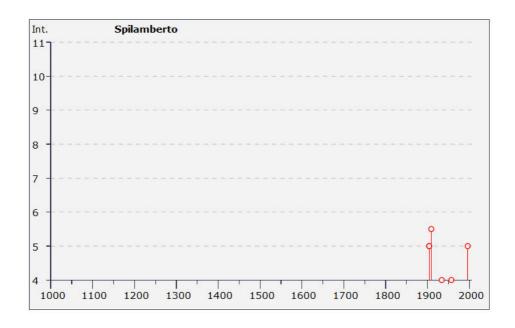


Tabella 3: Storia sismica del comune di Spilamberto (MO) in forma di grafico.

Località vicine (entro 10km) Località EQs Distanza (km) San Cesario sul Panaro Valsamoggia (Bazzano) Vignola Savignano sul Panaro Castelnuovo Rangone Castelvetro di Modena Castelfranco Emilia Campiglio Solignano Nuovo Cavazzona Crespellano Calcara San Damaso Monteveglio Alto Monteveglio 9 Pragatto Marano sul Panaro

Tabella 4: Elenco delle località vicine.

La sismicità storica non tiene conto della recente crisi sismica verificatasi la mattina del 20 Maggio 2012 con un terremoto di magnitudo locale pari a 5.9 con epicentro Finale Emilia e la mattina del 29 Maggio con terremoto di magnitudo locale pari a 5.8 ed epicentro fra i Comuni di Medolla e Cavezzo.

c. Definizione dell'azione sismica

Per la definizione dell'azione sismica di riferimento del sito in studio si è provveduto inoltre ad eseguire due stendimenti di sismica attiva con metodo MASW.

L'indagine è stata eseguita dalla ditta Elletipi s.r.l. di Ferrara su incarico della Provincia di Modena.

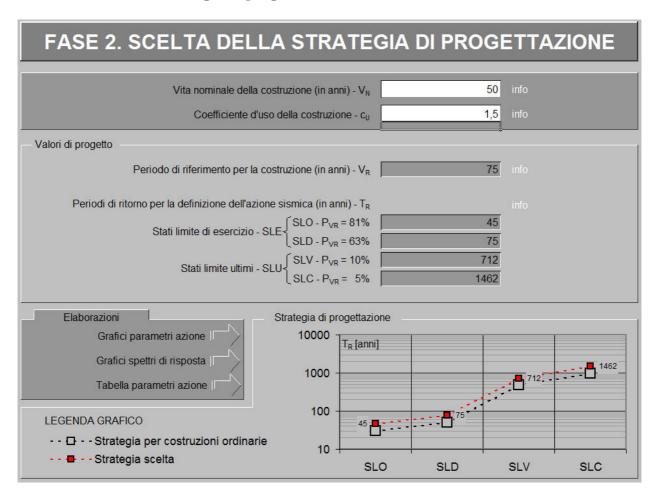
Di seguito viene riportata un'immagine dell'ubicazione degli stendimenti effettuati nel mese di novembre 2018.

Figura 2 – Ubicazione delle indagini geofisiche con metodo MASW - Immagine satellitare Google Earth 2018

Dalle indagini MASW eseguite si è verificato che la velocità delle onde di taglio nei due siti indagati risulta pari a Vs30 = 438 m/s per lo stendimento MASW_01 e Vs30 = 407 m/s per lo stendimento MASW_01. Negli Allegati al termine della presente relazione sono riportati i report delle acquisizioni eseguite e le specifiche del metodo di lavoro e delle attrezzature utilizzate.

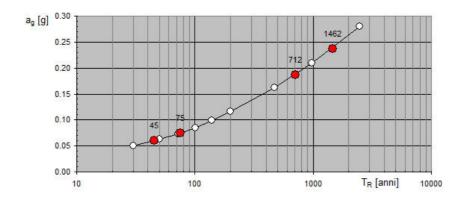
Considerate le caratteristiche geotecniche del terreno indagato dalle prove CPT eseguite nella porzione nord ovest del futuro intervento si è ritenuto, in via precauzionale, di considerare la **categoria di suolo** pari a "**D**". Al termine del presente capitolo sono riportati i report per la definizione della categoria di suolo sulla base dei dati desunti dalle prove CPT.

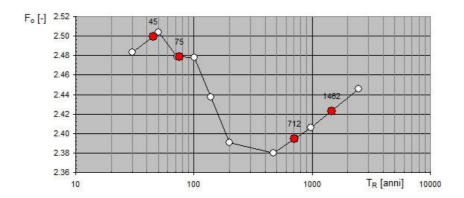
La categoria topografica del sito riconducibile a T1, come definito dal capitolo 3.2.2 delle NTC 2018, è infatti caratterizzata da una superficie pianeggiante (pendii e rilievi isolati con inclinazione media $i \le 15^{\circ}$).


d. Individuazione della pericolosità sismica del sito

Di seguito si riportano i dati salienti per la definizione della pericolosità sismica del sito che sono stati inseriti nel foglio di calcolo "Spetti NTC v. 1.03" scaricabile dal sito del Consiglio Superiore dei Lavori Pubblici (http://www.infrastrutture.gov.it/consuplp/).

FASE 1 - Individuazione della pericolosità del sito


FASE 2 - Scelta della strategia di progettazione



SLATO LIMITE	T _R [anni]	a _g [g]	F ₀ [-]	T _c * [s]
SLO	45	0.060	2.500	0.266
SLD	75	0.075	2.478	0.276
SLV	712	0.187	2.394	0.306
SLC	1462	0.237	2.423	0.313

Tabella 5: Valori dei parametri a_g , F_0 , T_c^* per i periodi di ritorno T_R associati a ciascuno Stato Limite.

-∎ Valori di progetto dei parametri a_g, F_o, T_C^{*} in funzione del periodo di ritorno T_F

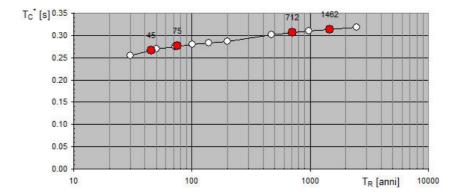


Tabella 6: Elaborazioni: Grafici parametri azione.

Spettri di risposta elastici per i diversi Stati Limite

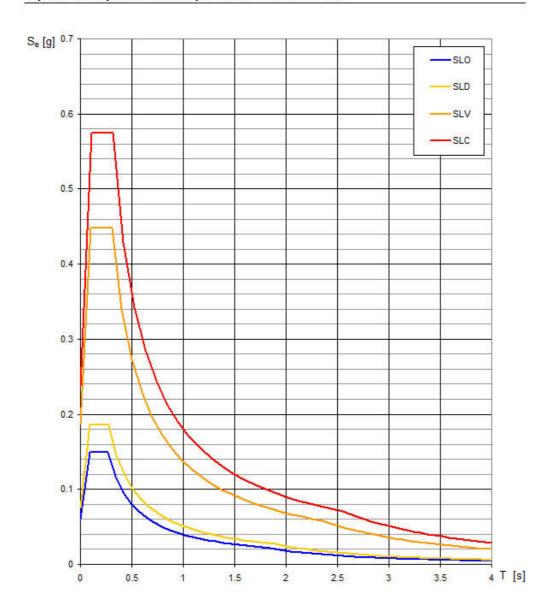
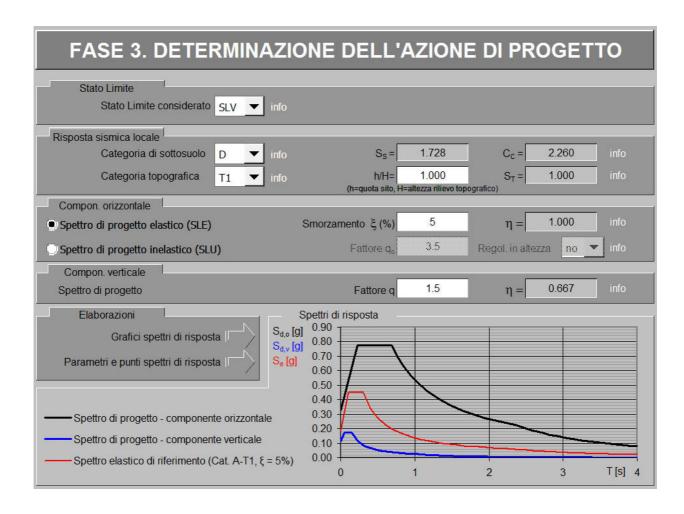



Tabella 7: Elaborazioni: Grafici spettri di risposta.

FASE 3 – Determinazione dell'azione di progetto

- Parametri dello "Spettro di risposta orizzontale e verticale per lo stato limite: SLV"

Parametri e punti dello spettro di risposta orizzontale per lo stato limite SLV

Parametri indipendenti

STATO LIMITE	SLV
a _o	0.187 g
F _o	2.394
T _C *	0.306 s
Ss	1.728
Cc	2.260
S _T	1.000
q	1.000

Parametri dipendenti

S	1.728
η	1.000
T _B	0.230 s
Tc	0.691 s
T _D	2.349 s

Espressioni dei parametri dipendenti

$$S = S_s \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{\frac{10}{(5+\xi)}} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_B = T_C / 3$$
 (NTC-07 Eq. 3.2.8)

$$T_C = C_C \cdot T_C^{\bullet}$$
 (NTC-07 Eq. 3.2.7)

$$T_D = 4,0-a_g/g+1,6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C \leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_{\sigma}(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_{e}(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	T [s]	Se [g]
	0.000	0.323
T _B -4	0.230	0.774
T _c +	0.691	0.774
	0.770	0.695
	0.849	0.630
	0.928	0.577
	1.007	0.532
	1.086	0.493
	1.165	0.460
	1.244	0.430
	1.323	0.405
	1.402	0.382
	1.481	0.362
(6)	1.560	0.343
	1.639	0.327
	1.717	0.312
	1.796	0.298
	1.875	0.286
	1.954	0.274
- 0	2.033	0.263
	2.112	0.254
	2.191	0.244
	2.270	0.236
T ₀ +	2.349	0.228
	2.427	0.213
9	2.506	0.200
	2.585	0.188
- 0	2.663	0.177
	2.742	0.167
	2.821	0.158
	2.899	0.150
	2.978	0.142
	3.056	0.135
	3.135	0.128
35	3.214	0.122
- 9	3.292	0.116
	3.371	0.111
	3.450	0.106
	3.528	0.101
_	3.607	0.097
	3.685	0.093
2	3.764	0.089
	3.843	0.085
- 12	3.921	0.082
	4.000	0.079

Parametri e punti dello spettro di risposta verticale per lo stato limite: SLV

Parametri indipendenti

STATO LIMITE	SLV
a _{gv}	0.109 g
Ss	1.000
ST	1.000
q	1.500
TB	0.050 s
Tc	0.150 s
TD	1.000 s

Parametri dipendenti

F _v	1.399
S	1.000
η	0.667

Espressioni dei parametri dipendenti

$$S = S_s \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$\eta = 1/q$$
 (NTC-08 §. 3.2.3.5)

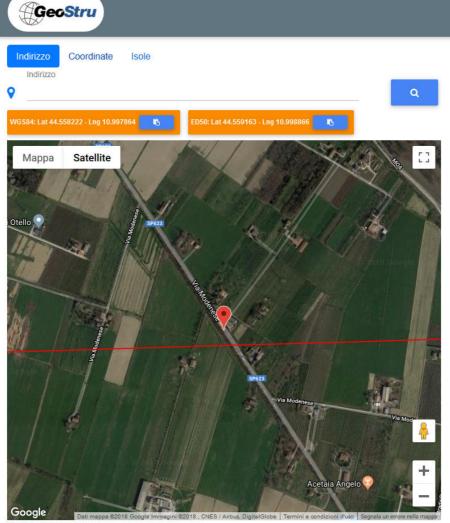
$$F_v = 1.35 \cdot F_o \cdot \left(\frac{a_g}{g}\right)^{0.5}$$
 (NTC-08 Eq. 3.2.11)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

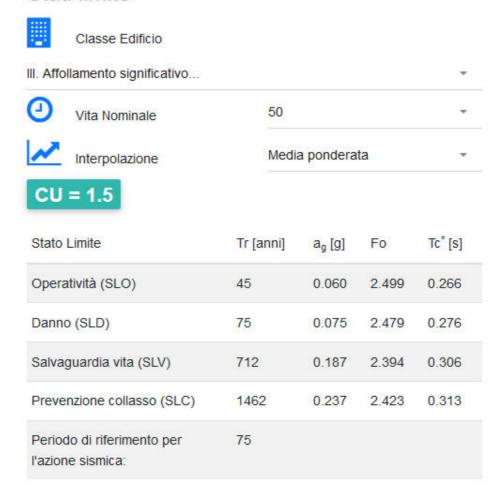
$$\begin{split} 0 &\leq T < T_B \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Punti dello spettro di risposta

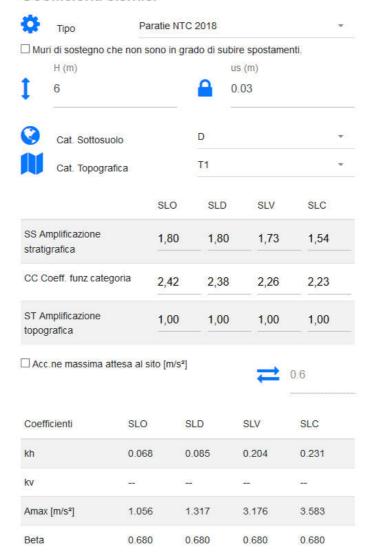
T _B 1 S Se G 0.000	unu		o di risposta
T _B → 0.050 0.175 T _C → 0.150 0.175 0.235 0.111 0.320 0.082 0.405 0.065 0.490 0.053 0.575 0.046 0.660 0.040 0.745 0.035 0.830 0.032 0.915 0.029 T _D → 1.000 0.026 1.094 0.022 1.188 0.019 1.281 0.016 1.375 0.014 1.469 0.012 1.563 0.011 1.656 0.010 1.750 0.009 1.844 0.008 1.938 0.007 2.031 0.006 2.125 0.006 2.219 0.005 2.313 0.005 2.406 0.005 2.500 0.004 2.594 0.004 2.688 0.004 2.781 0.003 2.875 0.003 2.969 0.003 3.063 0.003 3.156 0.003 3.250 0.002 3.344 0.002 3.438 0.002 3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.813 0.002 3.906 0.002		T[s]	Se [g]
T ₀	_	30770030	0.000
0.235 0.111 0.320 0.082 0.405 0.065 0.490 0.053 0.575 0.046 0.660 0.040 0.745 0.035 0.830 0.032 0.915 0.029 1.000 0.026 1.094 0.022 1.188 0.019 1.281 0.016 1.375 0.014 1.469 0.012 1.563 0.011 1.656 0.010 1.750 0.009 1.844 0.008 1.938 0.007 2.031 0.006 2.125 0.006 2.125 0.006 2.219 0.005 2.313 0.005 2.313 0.005 2.406 0.005 2.500 0.004 2.594 0.004 2.688 0.004 2.781 0.003 2.875 0.003 2.969 0.003 3.063 0.003 3.156 0.003 3.250 0.002 3.344 0.002 3.438 0.002 3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.813 0.002 3.813 0.002 3.813 0.002 3.813 0.002 3.906 0.002			
0.320 0.082 0.405 0.065 0.490 0.053 0.575 0.046 0.660 0.040 0.745 0.035 0.830 0.032 0.915 0.029 1.000 0.026 1.094 0.022 1.188 0.019 1.281 0.016 1.375 0.014 1.469 0.012 1.563 0.011 1.656 0.010 1.750 0.009 1.844 0.008 1.938 0.007 2.031 0.006 2.125 0.006 2.219 0.005 2.313 0.005 2.313 0.005 2.406 0.005 2.500 0.004 2.594 0.004 2.688 0.004 2.781 0.003 2.875 0.003 2.969 0.003 3.063 0.003 3.156 0.003 3.250 0.002 3.344 0.002 3.438 0.002 3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.813 0.002 3.813 0.002 3.813 0.002 3.813 0.002 3.813 0.002 3.813 0.002 3.906 0.002	C		7 25 15 N
0.405			2 22 22 23 24
0.490 0.053 0.575 0.046 0.660 0.040 0.745 0.035 0.830 0.032 0.915 0.029 1.000 0.026 1.094 0.022 1.188 0.019 1.281 0.016 1.375 0.014 1.469 0.012 1.563 0.011 1.656 0.010 1.750 0.009 1.844 0.008 1.938 0.007 2.031 0.006 2.125 0.006 2.219 0.005 2.313 0.005 2.313 0.005 2.406 0.005 2.219 0.005 2.313 0.005 2.406 0.005 2.500 0.004 2.594 0.004 2.688 0.004 2.781 0.003 2.875 0.003 2.969 0.003 3.063 0.003 3.156 0.003 3.156 0.003 3.250 0.002 3.344 0.002 3.438 0.002 3.531 0.002 3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.813 0.002 3.906 0.002			7
0.575 0.046 0.660 0.040 0.745 0.035 0.830 0.032 0.915 0.029 1.000 0.026 1.094 0.022 1.188 0.019 1.281 0.016 1.375 0.014 1.469 0.012 1.563 0.011 1.656 0.010 1.750 0.009 1.844 0.008 1.938 0.007 2.031 0.006 2.125 0.006 2.219 0.005 2.313 0.005 2.313 0.005 2.313 0.005 2.406 0.005 2.500 0.004 2.594 0.004 2.688 0.004 2.781 0.003 2.875 0.003 2.875 0.003 2.969 0.003 3.063 0.003 3.156 0.003 3.250 0.002 3.344 0.002 3.438 0.002 3.531 0.002 3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.813 0.002 3.813 0.002 3.906 0.002			d 725
0.660 0.040 0.745 0.035 0.830 0.032 0.915 0.029 1.000 0.026 1.094 0.022 1.188 0.019 1.281 0.016 1.375 0.014 1.469 0.012 1.563 0.011 1.656 0.010 1.750 0.009 1.844 0.008 1.938 0.007 2.031 0.006 2.125 0.006 2.219 0.005 2.313 0.005 2.313 0.005 2.313 0.005 2.313 0.005 2.219 0.005 2.313 0.005 2.219 0.005 2.313 0.005 2.313 0.005 2.406 0.005 2.500 0.004 2.594 0.004 2.688 0.004 2.781 0.003 2.875 0.003 2.969 0.003 3.063 0.003 3.156 0.003 3.250 0.002 3.344 0.002 3.348 0.002 3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.813 0.002 3.906 0.002			
0.745 0.035 0.830 0.032 0.915 0.029 1.000 0.026 1.094 0.022 1.188 0.019 1.281 0.016 1.375 0.014 1.469 0.012 1.563 0.011 1.656 0.010 1.750 0.009 1.844 0.008 1.938 0.007 2.031 0.006 2.125 0.006 2.219 0.005 2.313 0.005 2.313 0.005 2.406 0.005 2.500 0.004 2.594 0.004 2.688 0.004 2.781 0.003 2.875 0.003 2.969 0.003 3.063 0.003 3.156 0.003 3.250 0.002 3.344 0.002 3.438 0.002 3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.813 0.002 3.906 0.002		ETAUN. 3	A STATE OF THE STA
0.830 0.032 0.915 0.029 1.000 0.026 1.094 0.022 1.188 0.019 1.281 0.016 1.375 0.014 1.469 0.012 1.563 0.011 1.656 0.010 1.750 0.009 1.844 0.008 1.938 0.007 2.031 0.006 2.125 0.006 2.219 0.005 2.313 0.005 2.313 0.005 2.406 0.005 2.500 0.004 2.594 0.004 2.688 0.004 2.781 0.003 2.875 0.003 2.875 0.003 2.969 0.003 3.063 0.003 3.156 0.003 3.250 0.002 3.344 0.002 3.438 0.002 3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.813 0.002 3.906 0.002		100 April 100 V	75/4 SATES
0.915 0.029 1.000 0.026 1.094 0.022 1.188 0.019 1.281 0.016 1.375 0.014 1.469 0.012 1.563 0.011 1.656 0.010 1.750 0.009 1.844 0.008 1.938 0.007 2.031 0.006 2.125 0.006 2.219 0.005 2.313 0.005 2.313 0.005 2.406 0.005 2.500 0.004 2.594 0.004 2.688 0.004 2.781 0.003 2.875 0.003 2.969 0.003 3.063 0.003 3.156 0.003 3.250 0.002 3.344 0.002 3.438 0.002 3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.813 0.002 3.906 0.002		17.85.1577.5	100000000000000000000000000000000000000
To→ 1.000 0.026 1.094 0.022 1.188 0.019 1.281 0.016 1.375 0.014 1.469 0.012 1.563 0.011 1.656 0.010 1.750 0.009 1.844 0.008 1.938 0.007 2.031 0.006 2.125 0.006 2.219 0.005 2.313 0.005 2.406 0.005 2.500 0.004 2.594 0.004 2.594 0.004 2.688 0.004 2.781 0.003 2.875 0.003 2.969 0.003 3.063 0.003 3.156 0.003 3.250 0.002 3.344 0.002 3.438 0.002 3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.813 0.002 3.906 0.002		900000000000000000000000000000000000000	C STATES N
1.094 0.022 1.188 0.019 1.281 0.016 1.375 0.014 1.469 0.012 1.563 0.011 1.656 0.010 1.750 0.009 1.844 0.008 1.938 0.007 2.031 0.006 2.219 0.005 2.313 0.005 2.313 0.005 2.500 0.004 2.594 0.004 2.781 0.003 2.875 0.003 3.063 0.003 3.063 0.003 3.444 0.002 3.531 0.002 3.531 0.002 3.719 0.002 3.813 0.002 3.906 0.002	+ .	Waste and	
1.188 0.019 1.281 0.016 1.375 0.014 1.469 0.012 1.563 0.011 1.656 0.010 1.750 0.009 1.844 0.008 1.938 0.007 2.031 0.006 2.219 0.005 2.313 0.005 2.500 0.004 2.594 0.004 2.781 0.003 2.875 0.003 3.063 0.003 3.156 0.003 3.250 0.002 3.438 0.002 3.531 0.002 3.719 0.002 3.813 0.002 3.906 0.002	D		
1.281 0.016 1.375 0.014 1.469 0.012 1.563 0.011 1.656 0.010 1.750 0.009 1.844 0.008 1.938 0.007 2.031 0.006 2.125 0.006 2.219 0.005 2.313 0.005 2.500 0.004 2.594 0.004 2.688 0.004 2.781 0.003 2.969 0.003 3.063 0.003 3.250 0.002 3.438 0.002 3.531 0.002 3.719 0.002 3.813 0.002 3.906 0.002			
1.375 0.014 1.469 0.012 1.563 0.011 1.656 0.010 1.750 0.009 1.844 0.008 1.938 0.007 2.031 0.006 2.125 0.006 2.219 0.005 2.313 0.005 2.500 0.004 2.594 0.004 2.688 0.004 2.781 0.003 2.969 0.003 3.063 0.003 3.250 0.002 3.344 0.002 3.531 0.002 3.719 0.002 3.813 0.002 3.906 0.002		150000000000000000000000000000000000000	10.00
1.469 0.012 1.563 0.011 1.656 0.010 1.750 0.009 1.844 0.008 1.938 0.007 2.031 0.006 2.125 0.006 2.219 0.005 2.313 0.005 2.500 0.004 2.594 0.004 2.688 0.004 2.781 0.003 2.875 0.003 3.063 0.003 3.156 0.003 3.250 0.002 3.344 0.002 3.531 0.002 3.719 0.002 3.813 0.002 3.906 0.002		100000000000000000000000000000000000000	A 100 PK 100
1.563 0.011 1.656 0.010 1.750 0.009 1.844 0.008 1.938 0.007 2.031 0.006 2.125 0.006 2.219 0.005 2.313 0.005 2.500 0.004 2.594 0.004 2.688 0.004 2.781 0.003 2.969 0.003 3.063 0.003 3.250 0.002 3.344 0.002 3.531 0.002 3.719 0.002 3.813 0.002 3.906 0.002		100000000000	
1.656 0.010 1.750 0.009 1.844 0.008 1.938 0.007 2.031 0.006 2.125 0.006 2.219 0.005 2.313 0.005 2.500 0.004 2.594 0.004 2.688 0.004 2.781 0.003 2.875 0.003 3.063 0.003 3.156 0.003 3.250 0.002 3.444 0.002 3.531 0.002 3.719 0.002 3.813 0.002 3.906 0.002			3,000,000,000
1.750 0.009 1.844 0.008 1.938 0.007 2.031 0.006 2.125 0.006 2.219 0.005 2.313 0.005 2.406 0.005 2.500 0.004 2.594 0.004 2.688 0.004 2.781 0.003 2.969 0.003 3.063 0.003 3.156 0.003 3.250 0.002 3.444 0.002 3.531 0.002 3.719 0.002 3.813 0.002 3.906 0.002		150 POLICE 1	7 STATE OF THE PARTY OF THE PAR
1.844 0.008 1.938 0.007 2.031 0.006 2.125 0.006 2.219 0.005 2.313 0.005 2.406 0.005 2.500 0.004 2.594 0.004 2.688 0.004 2.781 0.003 2.875 0.003 3.063 0.003 3.156 0.003 3.250 0.002 3.344 0.002 3.531 0.002 3.531 0.002 3.719 0.002 3.813 0.002 3.906 0.002		10011000	a Parkage de
1.938 0.007 2.031 0.006 2.125 0.006 2.219 0.005 2.313 0.005 2.406 0.005 2.500 0.004 2.594 0.004 2.688 0.004 2.781 0.003 2.875 0.003 3.063 0.003 3.156 0.003 3.250 0.002 3.344 0.002 3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.906 0.002			3
2.031 0.006 2.125 0.006 2.219 0.005 2.313 0.005 2.406 0.005 2.500 0.004 2.594 0.004 2.688 0.004 2.781 0.003 2.875 0.003 3.063 0.003 3.156 0.003 3.250 0.002 3.344 0.002 3.531 0.002 3.719 0.002 3.813 0.002 3.906 0.002			4
2.125 0.006 2.219 0.005 2.313 0.005 2.406 0.005 2.500 0.004 2.594 0.004 2.688 0.004 2.781 0.003 2.875 0.003 3.063 0.003 3.156 0.003 3.250 0.002 3.344 0.002 3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.906 0.002		11120-711	
2.219 0.005 2.313 0.005 2.406 0.005 2.500 0.004 2.594 0.004 2.688 0.004 2.781 0.003 2.875 0.003 3.063 0.003 3.156 0.003 3.250 0.002 3.344 0.002 3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.906 0.002			A DESCRIPTION OF
2.313 0.005 2.406 0.005 2.500 0.004 2.594 0.004 2.688 0.004 2.781 0.003 2.875 0.003 2.969 0.003 3.063 0.003 3.250 0.002 3.344 0.002 3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.906 0.002			1507.5100.00
2.406 0.005 2.500 0.004 2.594 0.004 2.688 0.004 2.781 0.003 2.875 0.003 3.063 0.003 3.156 0.003 3.250 0.002 3.344 0.002 3.531 0.002 3.531 0.002 3.719 0.002 3.813 0.002 3.906 0.002			200000000
2.500 0.004 2.594 0.004 2.688 0.004 2.781 0.003 2.875 0.003 2.969 0.003 3.063 0.003 3.156 0.003 3.250 0.002 3.344 0.002 3.438 0.002 3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.906 0.002		28771872151	- CONTRACTOR - N
2.594 0.004 2.688 0.004 2.781 0.003 2.875 0.003 2.969 0.003 3.063 0.003 3.250 0.002 3.344 0.002 3.438 0.002 3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.906 0.002		50.000.000	8 Part 2000 C
2.688 0.004 2.781 0.003 2.875 0.003 2.969 0.003 3.063 0.003 3.250 0.002 3.344 0.002 3.438 0.002 3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.906 0.002			
2.875 0.003 2.969 0.003 3.063 0.003 3.156 0.003 3.250 0.002 3.344 0.002 3.438 0.002 3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.906 0.002			
2.875 0.003 2.969 0.003 3.063 0.003 3.156 0.003 3.250 0.002 3.344 0.002 3.438 0.002 3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.906 0.002		2.781	0.003
3.063 0.003 3.156 0.003 3.250 0.002 3.344 0.002 3.438 0.002 3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.906 0.002		2.875	The second secon
3.156 0.003 3.250 0.002 3.344 0.002 3.438 0.002 3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.906 0.002		2.969	0.003
3.250 0.002 3.344 0.002 3.438 0.002 3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.906 0.002		3.063	0.003
3.344 0.002 3.438 0.002 3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.906 0.002			0.003
3.438 0.002 3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.906 0.002		3.250	0.002
3.531 0.002 3.625 0.002 3.719 0.002 3.813 0.002 3.906 0.002			0.002
3.625 0.002 3.719 0.002 3.813 0.002 3.906 0.002		S01272 - 712	0.002
3.719 0.002 3.813 0.002 3.906 0.002		20,075,000,000	0.002
3.813 0.002 3.906 0.002		200 AND 1811 F	1507 1508 1
3.906 0.002		1001825025	200000000
100 100 100 100 100 100 100 100 100 100		100 C (CO) 1 V	7 SSM(2002) 1A
4.000 0.002		10000000	2 Fig. 7-2-2-2
	2	4.000	0.002


Di seguito si riportano anche i dati salienti per la definizione della pericolosità sismica del sito che sono stati elaborati mediante il codice di calcolo Geostru PS.

GEOSTRU PARAMETRI SISMICI


Geostru PS consente di individuare la pericolosità sismica secondo le NTC di tutte le località Italiane compreso le Isole direttamente su mappa geografica. Geostru PS fornisce oltre ai parametri sismici (ag , F0 e TC. *) per gli stati limite SLO, SLD, SLV, SLC, tipici del luogo o della costruzione in esame, i coefficienti sismici (kh, kv) orizzontali e verticali per: Muri di sostegno flessibili e rigidi, Paratie, Stabilità dei pendii e Fondazioni. Geostru PS fornisce un file di uscita in formato TXT il quale oltre ad essere importato automaticamente in tutti i software GEOSTRU potrà essere utilizzato come base di relazione tecnica sulla pericolosità sismica di sito. Geostru PS PRO consente inoltre di generare Spettri di risposta elastici delle componenti orizzontali e verticali, lo spettro di progetto ed il coefficiente Kh per un assegnato periodo della struttura.

Data ultimo rilascio il 27-02-2016


☑ Visualizza vertici della maglia di appartenenza

Stati limite

Coefficienti sismici per la progettazione della stabilità di una paratia

Coefficienti sismici

e. Valutazione del "Rischio sismico"

La "Carta provinciale delle aree suscettibili di effetti locali" del PTCP 2009 (approvato con DCP n.46/2009) è stata elaborata partendo, per le aree di pianura, dalla carta dei depositi affioranti e dalla carta dei depositi sepolti. In questo modo sono stati identificati i depositi che possono determinare effetti locali (suscettibili di amplificazione sismica: ghiaie, sabbie e limi; predisponenti alla liquefazione: sabbie fini ben classate entro 20 m da p.c. e falda con soggiacenza inferiore a 15 m; soggetti a forti cedimenti: argille e limi).

Di seguito viene riportato lo stralcio della cartografia della tavola 2.2 delle aree potenzialmente soggette ad effetti locali per eventi sismici del PTCP 2009.

	Effetti attesi
1	Area instabile e soggetta ad amplificazione per caratteristiche litologiche studi*, valutazione del coefficiente di amplificazione litologico e del grado di stabilità del versante in condizioni dinamiche o pseudostatiche (nel casi in cui siano ammessi interventi); microzonazione sismica* approfordimenti di III livello.
 2	Area instabile e soggetta ad amplificazione per caratteristiche litologiche e topografiche studi": valutazione del coefficiente di amplificazione litologico e topografico e del grado di stabilità in condizioni dinamiche o pseudostatiche (nei casi in cui siano ammessi interventi); microzonazione sismica": approformiementi di III livello; nelle aree prossime ai bordi superiori di scarpate o a quote immediatamente superiori agli ambiti soggetti da amplificazione per caratteristiche topografiche e nelle zone con accentuato contrasto di pendenza, lo studio di microzonazione sismica deve valutare anche gli effetti della topografia.
3	Area potenzialmente instabile e soggetta ad amplificazione per caratteristiche litologiche studi*: valutazione del coefficiente di amplificazione itologico e del grado di stabilità del versante in condizioni dinamiche o pseudostatiche; microzonazione sismoa*: approfondimenti di III livello.
4	Area potenzialmente instabile e soggetta ad amplificazione per caratteristiche litologiche e topografiche studi* valutazione del coefficiente di amplificazione litologico e topografico e del grado di stabilità del versante in condizioni dinamiche o pseudostatiche; microzonazione sismica* approfondimenti di III livello: nelle aree prossime al bordi superiori di scarpate o a quote immediatamente superiori agli ambiti soggetti ad amplificazione per caratteristiche topografiche e nelle zone con accentuato contrasto di pendenza, lo studio di microzonazione sismica deve valutare anche gli effetti della topografia.
5	Area potenzialmente soggetta ad amplificazione per caratteristiche litologiche studi* valutazione del coefficiente di amplificazione litologico; microzonazione sismica*: approfondimenti di Il livello.
6	Area potenzialmente soggetta ad amplificazione per caratteristiche litologiche e topografiche studi"- valutazione del coefficiente di amplificazione litologico e topografico; microzonazione sismica": approfondimenti di II livello; nelle aree prossime ai bordi superiori di scarpate o a quote immediatamente superiori agli ambiti soggetti ad amplificazione per caratteristiche lipografiche e nelle zone con accentuato contrasto di pendenza, lo studio di microzonazione sismica deve valutare anche gli effetti della topografia.
 7	Area soggetta ad amplificazione per caratteristiche litologiche e a potenziale liquefazione studi*, valutazione del coefficiente di amplificazione litologico, del potenziale di liquefazione e dei cedimenti attesi; microzonazione sismica*: approfondimenti di III livello.
8	Area soggetta ad amplificazione per caratteristiche litologiche e a potenziali cedimenti studi* valutazione del coefficiente di amplificazione litologico e dei cedimenti attes; microzonazione sismica*: sono riteruti sufficienti approfondimenti di II livello per la valutazione del coefficiente di amplificazione litologico e sono richiesti approfondimenti di III livello per la stima degli eventuali cedimenti.
9	Area potenzialmente non soggetta ad effetti locali studi: indagini per caraterizzare Vs.; in caso Vs. maggioreluguale di 800 m/s non è richiesta nessuna ulteriore indagine, in caso Vs. minore di 800 m/s è nichiesta la valutazione del coefficiente di amplificazione libiogico: microzonazione sismica": non richiesta nel primo caso, nel secondo caso approfondimenti del II livello.
10	Area potenzialmente soggetta ad amplificazione per caratteristiche topografiche studi" : indagini per caratterizzare Vs _{ss} e valutazione del coefficiente di amplificazione topografico; in caso Vs _{so} maggiore/uguale di 800 m/s è sufficiente la sola valutazione del coefficiente di amplificazione topografico, in caso Vs _{so} minore di 800 m/s occorre valutare anche i coefficiente di amplificazione itologiori microporazione sisminai. Valutazione degli effetti della topografia, con particolare attenzione nelle aree prossime al bordi di scarpata, negli ambiti immediatamente superiori ai settori soggetti ad amplificazione topografica, nelle zone con accentuato contrasto di pendenza; in caso Vs _{so} minore di 800 m/s valutazione anche del coefficiente di amplificazione litologico.

Figura 3: Legenda della carta delle aree potenzialmente soggette ad effetti locali per eventi sismici.

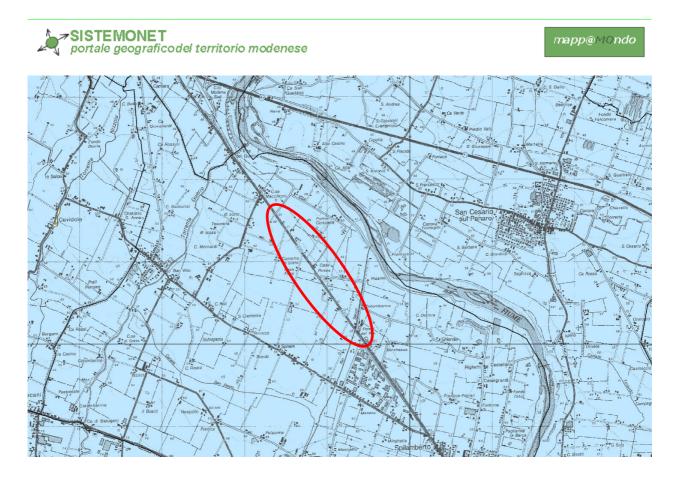


Figura 4: Carta delle aree potenzialmente soggette ad effetti locali per eventi sismici (Tavola 2.2 PTCP 2009), in scala 1:25.000.

L'area in esame è collocata su in una fascia di pianura classificata come "Area potenzialmente soggetta ad amplificazione per caratteristiche litologiche" (5).

f. Definizione della categoria di sottosuolo ai fini sismici

Attraverso l'elaborazione delle indagini geofisiche, l'analisi bibliografica delle indagini presenti nell'intorno dell'area in studio nonché dalle risultanze delle indagini geognostiche si è ritenuto, prudenzialmente di considerare come categoria di sottosuolo ai fini sismici la Categoria "D".

Le NTC 2018 definiscono tale categoria come "Depositi di terreni a grana grossa scarsamente addensati o terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 m/s e 180 m/s".

Come indicato al paragrafo 3.2.2 delle NTC 2018, per depositi con profondità H del substrato superiore a 30 m la velocità equivalente delle onde di taglio $V_{S,eq}$ è definita dal parametro $V_{S,30}$, ottenuto ponendo H=30 m nella seguente espressione e considerando le proprietà degli strati di terreno fino a tale profondità.

$$Vs, eq = \frac{H}{\sum_{strato=1}^{N} \frac{h(strato)}{Vs(strato)}}$$

STIMA CATEGORIA SUOLO

Stima categoria di sottosuolo secondo le norme tecniche per le Costruzioni.

Prova Nr. CPT_01

Profondità	Descrizione	qc	fs	Tipo	Autore	Vs	Autore	Cu
		(Kg/cm²)	(Kg/cm²)		Vs	(m/s)	Cu	(Kg/cm²)
0,2	Stima non eseguibile	0,0	0,0	Coesivo	Baldi et. al. 1989	0	Marsland 1974-	0,0
					Andrus et. al. 2001		Marsland e Powell 1979	
0,4	Torbe - Argille Torbose	11,0	0,95	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	117,62	Marsland 1974- Marsland e Powell 1979	0,4
0,6	Argille	9,0	0,54	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	134,77	Marsland 1974- Marsland e Powell 1979	0,3
0,8	Argille	8,0	0,42	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	142,8	Marsland 1974- Marsland e Powell 1979	0,3
1	Argille	9,0	0,6	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	151,78	Marsland 1974- Marsland e Powell 1979	0,3
1,2	Limi - Argille Sabbiose	12,0	0,36		Baldi et. al. 1989 Andrus et. al. 2001	177,97	Marsland 1974- Marsland e Powell 1979	0,4
1,4	Argille	9,0	0,42	Coesivo	Baldi et. al.	158,04	Marsland	0,3

					1989		1974-	
					Andrus et. al. 2001		Marsland e Powell 1979	
1,6	Argille	8,0	0,54	Coesivo	Baldi et. al. 1989 Andrus et.	157,19	Marsland 1974- Marsland e	0,3
					al. 2001		Powell 1979	
1,8	Argille	8,0	0,48	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	159,49	Marsland 1974- Marsland e Powell 1979	0,3
2	Limi - Argille Sabbiose	9,0	0,24		Baldi et. al. 1989 Andrus et. al. 2001	173,87	Marsland 1974- Marsland e Powell 1979	0,3
2,2	Argille - Argille Limose	7,0	0,24	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	159,71	Marsland 1974- Marsland e Powell	0,2
2,4	Torbe - Argille Torbose	5,0	0,36	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	151,9	1979 Marsland 1974- Marsland e Powell 1979	0,2
2,6	Argille - Argille Limose	7,0	0,24	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	163,06	Marsland 1974- Marsland e Powell 1979	0,2
2,8	Torbe - Argille Torbose	6,0	0,6	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	160,18	Marsland 1974- Marsland e Powell 1979	0,2
3	Torbe - Argille Torbose	9,0	0,65	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	174,01	Marsland 1974- Marsland e Powell 1979	0,3
3,2	Argille	14,0	0,77	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	190,29	Marsland 1974- Marsland e Powell 1979	0,5
3,4	Limi - Argille Sabbiose	18,0	0,42		Baldi et. al. 1989 Andrus et. al. 2001	218,87	Marsland 1974- Marsland e Powell 1979	0,6
3,6	Argille	9,0	0,6	Coesivo	Baldi et. al.	179,01	Marsland	0,3

					1989 Andrus et.		1974- Marsland e	
					al. 2001		Powell 1979	
3,8	Torbe - Argille Torbose	9,0	0,71	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	180,36	Marsland 1974- Marsland e Powell 1979	0,3
4	Argille - Argille Limose	14,0	0,54	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	196,87	Marsland 1974- Marsland e Powell 1979	0,5
4,2	Argille	14,0	0,71	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	198,38	Marsland 1974- Marsland e Powell 1979	0,5
4,4	Torbe - Argille Torbose	14,0	1,79	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	199,84	Marsland 1974- Marsland e Powell 1979	0,5
4,6	Torbe - Argille Torbose	25,0	1,96	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	223,6	Marsland 1974- Marsland e Powell 1979	0,8
4,8	Argille	33,0	1,96	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	236,96	Marsland 1974- Marsland e Powell 1979	1,1
5	Argille - Argille Limose	36,0	1,19	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	242,6	Marsland 1974- Marsland e Powell 1979	1,2
5,2	Argille	27,0	1,61	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	231,92	Marsland 1974- Marsland e Powell 1979	0,9
5,4	Argille	30,0	1,67	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	237,92	Marsland 1974- Marsland e Powell 1979	1,0
5,6	Argille	30,0	1,55	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	239,4	Marsland 1974- Marsland e Powell 1979	1,0
5,8	Limi	32,0	0,54	Incoerente	Baldi et. al.	270,78	De Beer	1,6

	Sabbiosi - Sabbie Limose				1989 Andrus et. al. 2001			
6	Torbe - Argille Torbose	19,0	1,43	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	223,01	Marsland 1974- Marsland e Powell 1979	0,6
6,2	Argille	24,0	1,07	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	233,94	Marsland 1974- Marsland e Powell 1979	0,8
6,4	Argille	26,0	1,73	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	238,63	Marsland 1974- Marsland e Powell 1979	0,9
6,6	Torbe - Argille Torbose	29,0	2,32	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	244,66	Marsland 1974- Marsland e Powell 1979	1,0
6,8	Torbe - Argille Torbose	36,0	2,68	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	255,77	Marsland 1974- Marsland e Powell 1979	1,2
7	Argille	43,0	1,96	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	265,55	Marsland 1974- Marsland e Powell 1979	1,4
7,2	Torbe - Argille Torbose	31,0	2,5	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	251,52	Marsland 1974- Marsland e Powell 1979	1,0
7,4	Torbe - Argille Torbose	37,0	2,8	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	260,95	Marsland 1974- Marsland e Powell 1979	1,2
7,6	Argille	41,0	2,26	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	267,14	Marsland 1974- Marsland e Powell 1979	1,4
7,8	Argille	40,0	2,44	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	267,21	Marsland 1974- Marsland e Powell 1979	1,3

 $\begin{array}{ccc} Vs,\!30 & & 195,\!14 & m/s \\ Cu,\!30 & & 0,\!46 & Kg/cm^2 \end{array}$

Terreno con spessore non superiore a 20m posto su substrato di riferimento con vs>800 m/s...No

Stima categoria suolo Vs,30

Categoria suolo tipo: CATEGORIA SUOLO TIPO:C

Per definire l'azione sismica di progetto, si valuta l'effetto della risposta sismica locale (RSL) determinando la categoria di sottosuolo specifica del sito.

Individuazione categoria di sottosuolo di riferimento (Tab. 3.2.II e 3.2.III) secondo: Vs.,30

Categoria suolo tipo:C

C - Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s .

STIMA CATEGORIA SUOLO

Stima categoria di sottosuolo secondo le norme tecniche per le Costruzioni.

Prova Nr. CPT_02

Profondità	Descrizione	qc	fs	Tipo	Autore	Vs	Autore	Cu
		(Kg/cm ²)	(Kg/cm²)		Vs	(m/s)	Cu	(Kg/cm ²)
0,2	Stima non eseguibile	0,0	0,0				De Beer	0,0
0,4	Torbe - Argille Torbose	14,0	1,37	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	122,87	Marsland 1974- Marsland e Powell 1979	0,5
0,6	Argille	12,0	0,71	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	142,37	Marsland 1974- Marsland e Powell 1979	0,4
0,8	Argille - Argille Limose	15,0	0,54	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	160,83	Marsland 1974- Marsland e Powell 1979	0,5
1	Limi - Argille Sabbiose	14,0	0,42		Baldi et. al. 1989 Andrus et. al. 2001	184,65	Marsland 1974- Marsland e Powell 1979	0,5
1,2	Argille - Argille Limose	13,0	0,48	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	172,12	Marsland 1974- Marsland e Powell 1979	0,4
1,4	Argille	8,0	0,54	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	162,64	Marsland 1974- Marsland e Powell 1979	0,3
1,6	Limi - Argille Sabbiose	8,0	0,24		Baldi et. al. 1989 Andrus et. al. 2001	173,04	Marsland 1974- Marsland e Powell 1979	0,3
1,8	Torbe - Argille Torbose	5,0	0,36	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	156,54	Marsland 1974- Marsland e Powell 1979	0,2
2	Argille	5,0	0,3	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	158,61	Marsland 1974- Marsland e Powell 1979	0,2

2,2	Argille	7,0	0,36	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	169,88	Marsland 1974- Marsland e Powell	0,2
2,4	Argille	7,0	0,36	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	171,21	Marsland 1974- Marsland e Powell	0,2
2,6	Argille	9,0	0,42	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	180,52	1979 Marsland 1974- Marsland e Powell 1979	0,3
2,8	Argille - Argille Limose	11,0	0,42	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	188,62	Marsland 1974- Marsland e Powell 1979	0,4
3	Sabbie limose	15,0	0,24	Incoerente	Baldi et. al. 1989 Andrus et. al. 2001	214,45	De Beer	0,8
3,2	Argille - Argille Limose	9,0	0,36	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	184,56	Marsland 1974- Marsland e Powell 1979	0,3
3,4	Argille	6,0	0,3	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	172,57	Marsland 1974- Marsland e Powell 1979	0,2
3,6	Argille	7,0	0,3	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	178,52	Marsland 1974- Marsland e Powell	0,2
3,8	Argille	7,0	0,3	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	179,55	1979 Marsland 1974- Marsland e Powell 1979	0,2
4	Argille	7,0	0,3	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	180,55	Marsland 1974- Marsland e Powell 1979	0,2
4,2	Argille - Argille Limose	9,0	0,36	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	189,98	Marsland 1974- Marsland e Powell 1979	0,3
4,4	Limi -	12,0	0,36		Baldi et. al.	209,43	Marsland	0,4

	Argille Sabbiose				1989 Andrus et. al. 2001		1974- Marsland e Powell 1979	
4,6	Argille	13,0	0,6	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	205,33	Marsland 1974- Marsland e Powell 1979	0,4
4,8	Argille - Argille Limose	21,0	0,71	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	225,25	Marsland 1974- Marsland e Powell 1979	0,7
5	Argille - Argille Limose	19,0	0,77	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	222,5	Marsland 1974- Marsland e Powell 1979	0,6
5,2	Argille - Argille Limose	27,0	0,95	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	238,45	Marsland 1974- Marsland e Powell 1979	0,9
5,4	Argille - Argille Limose	31,0	1,25	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	245,82	Marsland 1974- Marsland e Powell 1979	1,0
5,6	Argille	26,0	1,49	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	239,38	Marsland 1974- Marsland e Powell 1979	0,9
5,8	Argille - Argille Limose	37,0	1,43	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	256,53	Marsland 1974- Marsland e Powell 1979	1,2
6	Torbe - Argille Torbose	23,0	1,9	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	236,6	Marsland 1974- Marsland e Powell 1979	0,8
6,2	Argille	21,0	0,95	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	233,85	Marsland 1974- Marsland e Powell 1979	0,7
6,4	Argille - Argille Limose	25,0	0,89	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	242,47	Marsland 1974- Marsland e Powell 1979	0,8
6,6	Argille	31,0	1,43	Coesivo	Baldi et. al.	253,23	Marsland	1,0

					1989 Andrus et. al. 2001		1974- Marsland e Powell 1979	
6,8	Argille	39,0	2,2	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	265,2	Marsland 1974- Marsland e Powell 1979	1,3
7	Argille	48,0	2,08	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	276,64	Marsland 1974- Marsland e Powell 1979	1,6
7,2	Argille	45,0	2,98	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	274,68	Marsland 1974- Marsland e Powell 1979	1,5
7,4	Torbe - Argille Torbose	37,0	2,8	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	266,29	Marsland 1974- Marsland e Powell 1979	1,2
7,6	Argille	40,0	2,38	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	271,24	Marsland 1974- Marsland e Powell 1979	1,3
7,8	Argille	42,0	2,38	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	274,79	Marsland 1974- Marsland e Powell 1979	1,4

 $\begin{array}{ccc} Vs,\!30 & & 118,\!43 & m/s \\ Cu,\!30 & & 0,\!42 & Kg/cm^2 \end{array}$

Terreno con spessore non superiore a 20m posto su substrato di riferimento con vs>800 m/s...No

Stima categoria suolo Vs,30

Categoria suolo tipo: CATEGORIA SUOLO TIPO:D

Per definire l'azione sismica di progetto, si valuta l'effetto della risposta sismica locale (RSL) determinando la categoria di sottosuolo specifica del sito.

Individuazione categoria di sottosuolo di riferimento (Tab. 3.2.II e 3.2.III) secondo: Vs,30

Categoria suolo tipo:D

D - Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 m/s e 180 m/s

STIMA CATEGORIA SUOLO

Stima categoria di sottosuolo secondo le norme tecniche per le Costruzioni.

Prova Nr. CPT_03

Profondità	Descrizione	qc	fs	Tipo	Autore	Vs	Autore	Cu
		(Kg/cm ²)	(Kg/cm ²)	-	Vs	(m/s)	Cu	(Kg/cm ²)
0,2	Stima non eseguibile	0,0	0,0				De Beer	0,0
0,4	Torbe - Argille Torbose	10,0	1,61	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	115,61	Marsland 1974- Marsland e Powell 1979	0,3
0,6	Argille	17,0	0,95	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	151,64	Marsland 1974- Marsland e Powell 1979	0,6
0,8	Limi - Argille Sabbiose	24,0	0,71		Baldi et. al. 1989 Andrus et. al. 2001	202,99	Marsland 1974- Marsland e Powell 1979	0,8
1	Argille	19,0	1,13	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	177,74	Marsland 1974- Marsland e Powell 1979	0,6
1,2	Argille - Argille Limose	18,0	0,71	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	183,4	Marsland 1974- Marsland e Powell 1979	0,6
1,4	Argille	15,0	0,65	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	183,2	Marsland 1974- Marsland e Powell 1979	0,5
1,6	Torbe - Argille Torbose	9,0	0,65	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	171,31	Marsland 1974- Marsland e Powell 1979	0,3
1,8	Torbe - Argille Torbose	5,0	0,42	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	157,25	Marsland 1974- Marsland e Powell 1979	0,2
2	Limi - Argille Sabbiose	11,0	0,3		Baldi et. al. 1989 Andrus et. al. 2001	194,1	Marsland 1974- Marsland e Powell	0,4

							1979	
2,2	Argille	9,0	0,54	Coesivo	Baldi et. al. 1989	180,52	Marsland 1974-	0,3
					Andrus et.		Marsland e	
					al. 2001		Powell	
							1979	
2,4	Argille	6,0	0,36	Coesivo	Baldi et. al. 1989	168,95	Marsland 1974-	0,2
					Andrus et.		Marsland e	
					al. 2001		Powell	
							1979	
2,6	Limi -	13,0	0,42		Baldi et. al.	206,75	Marsland	0,4
	Argille				1989		1974-	
	Sabbiose				Andrus et.		Marsland e	
					al. 2001		Powell	
							1979	
2,8	Argille -	14,0	0,54	Coesivo	Baldi et. al.	199,84	Marsland	0,5
	Argille				1989		1974-	
	Limose				Andrus et. al. 2001		Marsland e	
					ai. 2001		Powell 1979	
3	Argille	11,0	0,65	Coesivo	Baldi et. al.	192,65	Marsland	0,4
3	Aigine	11,0	0,03	Cocsivo	1989	172,03	1974-	0,4
					Andrus et.		Marsland e	
					al. 2001		Powell	
							1979	
3,2	Argille	15,0	0,71	Coesivo	Baldi et. al.	205,15	Marsland	0,5
					1989		1974-	
					Andrus et.		Marsland e	
					al. 2001		Powell	
2.4		1.50	1.01		5.11	200.0	1979	
3,4	Argille	16,0	1,01	Coesivo	Baldi et. al.	208,9	Marsland	0,5
					1989 Andrus et.		1974- Marsland e	
					al. 2001		Powell	
					ai. 2001		1979	
3,6	Torbe -	13,0	0,95	Coesivo	Baldi et. al.	202,44	Marsland	0,4
2,5	Argille	,0	J,75	23251,3	1989	_~,	1974-	٠, .
	Torbose				Andrus et.		Marsland e	
					al. 2001		Powell	
							1979	
3,8	Argille	9,0	0,6	Coesivo	Baldi et. al.	190,48	Marsland	0,3
					1989		1974-	
					Andrus et.		Marsland e	
					al. 2001		Powell	
4	Argille	10,0	0,42	Coesivo	Baldi et. al.	195,14	1979 Marsland	0.2
4	Aigille	10,0	0,42	Coesivo	1989	173,14	1974-	0,3
					Andrus et.		Marsland e	
					al. 2001		Powell	
							1979	
4,2	Argille	12,0	0,6	Coesivo	Baldi et. al.	202,75	Marsland	0,4
					1989		1974-	
					Andrus et.		Marsland e	
					al. 2001		Powell	

							1979	
4,4	Limi - Argille	15,0	0,42		Baldi et. al. 1989	223,73	Marsland 1974-	0,5
	Sabbiose				Andrus et.		Marsland e	
					al. 2001		Powell	
							1979	
4,6	Limi - Argille	22,0	0,65		Baldi et. al. 1989	247,36	Marsland 1974-	0,7
	Sabbiose				Andrus et.		Marsland e	
					al. 2001		Powell	
							1979	
4,8	Limi -	21,0	0,65		Baldi et. al.	245,56	Marsland	0,7
	Argille				1989		1974-	
	Sabbiose				Andrus et.		Marsland e	
					al. 2001		Powell	
							1979	
5	Limi -	35,0	1,07		Baldi et. al.	280,4	Marsland	1,2
	Argille				1989		1974-	
	Sabbiose				Andrus et.		Marsland e	
					al. 2001		Powell	
		20.0	2.00			250.05	1979	
5,2	Argille	39,0	2,08	Coesivo	Baldi et. al.	258,07	Marsland	1,3
					1989		1974-	
					Andrus et. al. 2001		Marsland e	
					ai. 2001		Powell 1979	
5,4	Torbe -	28,0	1,96	Coesivo	Baldi et. al.	244,34	Marsland	0,9
J, ⊤	Argille	20,0	1,70	Cocsivo	1989	277,37	1974-	0,5
	Torbose				Andrus et.		Marsland e	
					al. 2001		Powell	
							1979	
5,6	Argille	22,0	1,43	Coesivo	Baldi et. al.	235,04	Marsland	0,7
					1989		1974-	
					Andrus et.		Marsland e	
					al. 2001		Powell	
							1979	
5,8	Argille	19,0	0,95	Coesivo	Baldi et. al.	229,97	Marsland	0,6
					1989		1974-	
					Andrus et.		Marsland e	
					al. 2001		Powell	
6	Argille -	25,0	0,83	Coesivo	Baldi et. al.	242,8	1979 Marsland	0,8
U	Argille -	25,0	0,63	COESIVO	1989	444,0	1974-	0,8
	Limose				Andrus et.		Marsland e	
	Limose				al. 2001		Powell	
					un 2001		1979	
6,2	Argille	23,0	1,07	Coesivo	Baldi et. al.	240,23	Marsland	0,8
					1989		1974-	
					Andrus et.		Marsland e	
					al. 2001		Powell	
							1979	
6,4	Argille	23,0	1,19	Coesivo	Baldi et. al.	241,28	Marsland	0,8
					1989		1974-	
					Andrus et.		Marsland e	
					al. 2001		Powell	

							1979	
6,6	Argille - Argille Limose	23,0	0,77	Coesivo	Baldi et. al. 1989 Andrus et.	242,3	Marsland 1974- Marsland e	0,8
					al. 2001		Powell 1979	
6,8	Argille	25,0	1,07	Coesivo	Baldi et. al. 1989	247	Marsland 1974-	0,8
					Andrus et. al. 2001		Marsland e Powell 1979	
7	Argille	31,0	1,43	Coesivo	Baldi et. al. 1989	257,85	Marsland 1974-	1,0
					Andrus et. al. 2001		Marsland e Powell 1979	
7,2	Argille	36,0	1,85	Coesivo	Baldi et. al. 1989	266,01	Marsland 1974-	1,2
					Andrus et. al. 2001		Marsland e Powell 1979	
7,4	Argille	38,0	2,08	Coesivo	Baldi et. al. 1989	269,76	Marsland 1974-	1,3
					Andrus et. al. 2001		Marsland e Powell 1979	
7,6	Argille	41,0	2,2	Coesivo	Baldi et. al. 1989	274,61	Marsland 1974-	1,4
					Andrus et. al. 2001		Marsland e Powell 1979	
7,8	Argille	39,0	2,32	Coesivo	Baldi et. al. 1989	273,23	Marsland 1974-	1,3
					Andrus et. al. 2001		Marsland e Powell 1979	

Vs,30 Cu,30 121,63 m/s 0,52 Kg/cm²

Terreno con spessore non superiore a 20m posto su substrato di riferimento con vs>800 m/s...No

Stima categoria suolo

Vs,30

Categoria suolo tipo:

CATEGORIA SUOLO TIPO:D

Per definire l'azione sismica di progetto, si valuta l'effetto della risposta sismica locale (RSL) determinando la categoria di sottosuolo specifica del sito.

Individuazione categoria di sottosuolo di riferimento (Tab. 3.2.II e 3.2.III) secondo: Vs,30

Categoria suolo tipo:D

D - Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 m/s e 180 m/s

STIMA CATEGORIA SUOLO

Stima categoria di sottosuolo secondo le norme tecniche per le Costruzioni.

Prova Nr. CPT_04

Profondità	Descrizione	qc	fs	Tipo	Autore	Vs	Autore	Cu
		(Kg/cm²)	(Kg/cm²)		Vs	(m/s)	Cu	(Kg/cm ²)
0,2	Stima non eseguibile	0,0	0,0				De Beer	0,0
0,4	Torbe - Argille Torbose	12,0	1,19	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	119,49	Marsland 1974- Marsland e Powell 1979	0,4
0,6	Torbe - Argille Torbose	18,0	1,37	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	153,64	Marsland 1974- Marsland e Powell 1979	0,6
0,8	Torbe - Argille Torbose	12,0	1,25	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	154,97	Marsland 1974- Marsland e Powell 1979	0,4
1	Argille	13,0	0,83	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	165,75	Marsland 1974- Marsland e Powell 1979	0,4
1,2	Torbe - Argille Torbose	11,0	0,95	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	167,3	Marsland 1974- Marsland e Powell 1979	0,4
1,4	Limi - Argille Sabbiose	17,0	0,42		Baldi et. al. 1989 Andrus et. al. 2001	205,33	Marsland 1974- Marsland e Powell 1979	0,6
1,6	Torbe - Argille Torbose	9,0	0,65	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	170,87	Marsland 1974- Marsland e Powell 1979	0,3
1,8	Argille	7,0	0,36	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	166,84	Marsland 1974- Marsland e Powell 1979	0,2
2	Limi - Argille Sabbiose	8,0	0,18		Baldi et. al. 1989 Andrus et. al. 2001	178,98	Marsland 1974- Marsland e Powell 1979	0,3

2,2	Argille - Argille Limose	6,0	0,24	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	167,44	Marsland 1974- Marsland e Powell 1979	0,2
2,4	Argille - Argille Limose	7,0	0,24	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	173,42	Marsland 1974- Marsland e Powell 1979	0,2
2,6	Torbe - Argille Torbose	5,0	0,48	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	164,24	Marsland 1974- Marsland e Powell 1979	0,2
2,8	Torbe - Argille Torbose	9,0	0,77	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	183,82	Marsland 1974- Marsland e Powell 1979	0,3
3	Argille	6,0	0,3	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	171,9	Marsland 1974- Marsland e Powell 1979	0,2
3,2	Torbe - Argille Torbose	5,0	0,36	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	167,28	Marsland 1974- Marsland e Powell 1979	0,2
3,4	Argille - Argille Limose	7,0	0,24	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	178,78	Marsland 1974- Marsland e Powell 1979	0,2
3,6	Argille	7,0	0,3	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	179,8	Marsland 1974- Marsland e Powell 1979	0,2
3,8	Argille - Argille Limose	8,0	0,3	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	185,22	Marsland 1974- Marsland e Powell 1979	0,3
4	Argille - Argille Limose	8,0	0,3	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	186,21	Marsland 1974- Marsland e Powell 1979	0,3
4,2	Argille	8,0	0,36	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	187,18	Marsland 1974- Marsland e Powell 1979	0,3

4,4	Argille	10,0	0,42	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	195,87	Marsland 1974- Marsland e Powell 1979	0,3
4,6	Argille	10,0	0,6	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	196,82	Marsland 1974- Marsland e Powell 1979	0,3
4,8	Argille	14,0	0,65	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	210,23	Marsland 1974- Marsland e Powell 1979	0,5
5	Argille	21,0	1,13	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	227,47	Marsland 1974- Marsland e Powell 1979	0,7
5,2	Torbe - Argille Torbose	19,0	1,43	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	224,62	Marsland 1974- Marsland e Powell 1979	0,6
5,4	Torbe - Argille Torbose	16,0	1,13	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	218,84	Marsland 1974- Marsland e Powell 1979	0,5
5,6	Argille	26,0	1,13	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	240,11	Marsland 1974- Marsland e Powell 1979	0,9
5,8	Argille	25,0	1,61	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	239,61	Marsland 1974- Marsland e Powell 1979	0,8
6	Argille	29,0	1,55	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	247,33	Marsland 1974- Marsland e Powell 1979	1,0
6,2	Argille	38,0	1,79	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	261,02	Marsland 1974- Marsland e Powell 1979	1,3
6,4	Argille	42,0	2,26	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	267,13	Marsland 1974- Marsland e Powell 1979	1,4

6,6	Argille	41,0	2,14	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	267,26	Marsland 1974- Marsland e Powell 1979	1,4
6,8	Argille - Argille Limose	39,0	1,55	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	266,1	Marsland 1974- Marsland e Powell 1979	1,3
7	Argille	29,0	1,49	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	253,32	Marsland 1974- Marsland e Powell 1979	1,0
7,2	Argille	23,0	1,43	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	243,89	Marsland 1974- Marsland e Powell 1979	0,8
7,4	Argille - Argille Limose	36,0	1,31	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	265,6	Marsland 1974- Marsland e Powell 1979	1,2
7,6	Argille	27,0	1,79	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	253,14	Marsland 1974- Marsland e Powell 1979	0,9
7,8	Torbe - Argille Torbose	22,0	1,55	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	244,85	Marsland 1974- Marsland e Powell 1979	0,7

 $V_{8,30}$ 117,48 m/s Cu,30 0,39 Kg/cm²

Terreno con spessore non superiore a 20m posto su substrato di riferimento con vs>800 m/s...No

Stima categoria suolo Vs,30

Categoria suolo tipo: CATEGORIA SUOLO TIPO:D

Per definire l'azione sismica di progetto, si valuta l'effetto della risposta sismica locale (RSL) determinando la categoria di sottosuolo specifica del sito.

Individuazione categoria di sottosuolo di riferimento (Tab. 3.2.II e 3.2.III) secondo: Vs,30

Categoria suolo tipo:D

D - Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 m/s e 180 m/s

STIMA CATEGORIA SUOLO

Stima categoria di sottosuolo secondo le norme tecniche per le Costruzioni.

Prova Nr. CPT_05

Profondità	Descrizione	qc	fs	Tipo	Autore	Vs	Autore	Cu
		(Kg/cm ²)	(Kg/cm²)		Vs	(m/s)	Cu	(Kg/cm ²)
0,2	Stima non eseguibile	0,0	0,0				De Beer	0,0
0,4	Argille	16,0	0,83	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	125,88	Marsland 1974- Marsland e Powell 1979	0,5
0,6	Torbe - Argille Torbose	9,0	1,25	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	134,77	Marsland 1974- Marsland e Powell 1979	0,3
0,8	Argille	12,0	0,54	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	153,94	Marsland 1974- Marsland e Powell 1979	0,4
1	Torbe - Argille Torbose	9,0	0,83	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	154,14	Marsland 1974- Marsland e Powell 1979	0,3
1,2	Argille	8,0	0,48	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	156,89	Marsland 1974- Marsland e Powell 1979	0,3
1,4	Torbe - Argille Torbose	6,0	0,42	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	153,67	Marsland 1974- Marsland e Powell 1979	0,2
1,6	Limi - Argille Sabbiose	6,0	0,18		Baldi et. al. 1989 Andrus et. al. 2001	160,49	Marsland 1974- Marsland e Powell 1979	0,2
1,8	Limi - Argille Sabbiose	7,0	0,18		Baldi et. al. 1989 Andrus et. al. 2001	169,77	Marsland 1974- Marsland e Powell 1979	0,2
2	Limi - Argille Sabbiose	10,0	0,3		Baldi et. al. 1989 Andrus et. al. 2001	188,62	Marsland 1974- Marsland e Powell 1979	0,3

2,2	Argille	9,0	0,48	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	179,52	Marsland 1974- Marsland e Powell 1979	0,3
2,4	Argille	8,0	0,48	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	177,04	Marsland 1974- Marsland e Powell 1979	0,3
2,6	Argille - Argille Limose	9,0	0,36	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	182,13	Marsland 1974- Marsland e Powell 1979	0,3
2,8	Argille	8,0	0,42	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	179,5	Marsland 1974- Marsland e Powell 1979	0,3
3	Torbe - Argille Torbose	4,0	0,36	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	159,3	Marsland 1974- Marsland e Powell 1979	0,1
3,2	Argille	3,0	0,18	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	151,99	Marsland 1974- Marsland e Powell 1979	0,1
3,4	Argille	4,0	0,18	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	160,9	Marsland 1974- Marsland e Powell 1979	0,1
3,6	Argille	4,0	0,18	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	161,73	Marsland 1974- Marsland e Powell 1979	0,1
3,8	Argille	7,0	0,3	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	179,93	Marsland 1974- Marsland e Powell 1979	0,2
4	Argille - Argille Limose	8,0	0,3	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	185,35	Marsland 1974- Marsland e Powell 1979	0,3
4,2	Argille - Argille Limose	12,0	0,42	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	200,59	Marsland 1974- Marsland e Powell 1979	0,4

4,4	Argille - Argille	18,0	0,65	Coesivo	Baldi et. al. 1989	217,18	Marsland 1974-	0,6
	Limose				Andrus et. al. 2001		Marsland e Powell 1979	
4,6	Argille	21,0	0,95	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	224,71	Marsland 1974- Marsland e Powell 1979	0,7
4,8	Argille	20,0	1,19	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	224,06	Marsland 1974- Marsland e Powell 1979	0,7
5	Argille	20,0	1,07	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	225,34	Marsland 1974- Marsland e Powell 1979	0,7
5,2	Argille	17,0	1,07	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	219,96	Marsland 1974- Marsland e Powell 1979	0,6
5,4	Argille	26,0	1,07	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	238,75	Marsland 1974- Marsland e Powell 1979	0,9
5,6	Argille - Argille Limose	37,0	1,25	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	255,88	Marsland 1974- Marsland e Powell 1979	1,2
5,8	Argille	39,0	2,02	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	259,76	Marsland 1974- Marsland e Powell 1979	1,3
6	Argille	40,0	2,08	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	262,34	Marsland 1974- Marsland e Powell 1979	1,3
6,2	Argille	35,0	1,55	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	257,4	Marsland 1974- Marsland e Powell 1979	1,2
6,4	Argille	33,0	1,37	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	255,95	Marsland 1974- Marsland e Powell 1979	1,1

6,6	Argille	27,0	1,31	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	247,96	Marsland 1974- Marsland e Powell 1979	0,9
6,8	Argille	23,0	1,25	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	241,9	Marsland 1974- Marsland e Powell 1979	0,8
7	Argille - Argille Limose	25,0	1,01	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	246,6	Marsland 1974- Marsland e Powell 1979	0,8
7,2	Argille - Argille Limose	32,0	1,25	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	258,92	Marsland 1974- Marsland e Powell 1979	1,1
7,4	Argille	24,0	1,43	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	246,76	Marsland 1974- Marsland e Powell 1979	0,8
7,6	Argille	23,0	1,19	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	245,81	Marsland 1974- Marsland e Powell 1979	0,8
7,8	Argille	24,0	1,49	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	248,65	Marsland 1974- Marsland e Powell 1979	0,8

 $\begin{array}{ccc} Vs,\!30 & & 116,\!52 & m/s \\ Cu,\!30 & & 0,\!33 & Kg/cm^2 \end{array}$

Terreno con spessore non superiore a 20m posto su substrato di riferimento con vs>800 m/s...No

Stima categoria suolo Vs,30

Categoria suolo tipo: CATEGORIA SUOLO TIPO:D

Per definire l'azione sismica di progetto, si valuta l'effetto della risposta sismica locale (RSL) determinando la categoria di sottosuolo specifica del sito.

Individuazione categoria di sottosuolo di riferimento (Tab. 3.2.II e 3.2.III) secondo: Vs,30

Categoria suolo tipo:D

D - Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 m/s e 180 m/s

STIMA CATEGORIA SUOLO

Stima categoria di sottosuolo secondo le norme tecniche per le Costruzioni.

Prova Nr. CPT_006

Profondità	Descrizione	qc	fs	Tipo	Autore	Vs	Autore	Cu
		(Kg/cm ²)	(Kg/cm²)	•	Vs	(m/s)	Cu	(Kg/cm ²)
0,2	Stima non eseguibile	0,0	0,0				De Beer	0,0
0,4	Torbe - Argille Torbose	7,0	0,54	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	107,45	Marsland 1974- Marsland e Powell 1979	0,2
0,6	Argille	7,0	0,42	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	128,03	Marsland 1974- Marsland e Powell 1979	0,2
0,8	Argille	7,0	0,48	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	138,9	Marsland 1974- Marsland e Powell 1979	0,2
1	Sabbie limose	19,0	0,3	Incoerente	Baldi et. al. 1989 Andrus et. al. 2001	198,41	De Beer	1,0
1,2	Argille - Argille Limose	18,0	0,6	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	182,04	Marsland 1974- Marsland e Powell 1979	0,6
1,4	Argille	17,0	0,95	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	186,27	Marsland 1974- Marsland e Powell 1979	0,6
1,6	Argille	15,0	1,01	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	187,06	Marsland 1974- Marsland e Powell 1979	0,5
1,8	Limi - Argille Sabbiose	18,0	0,42		Baldi et. al. 1989 Andrus et. al. 2001	216,15	Marsland 1974- Marsland e Powell 1979	0,6
2	Argille - Argille Limose	17,0	0,65	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	199,97	Marsland 1974- Marsland e Powell 1979	0,6
2,2	Argille -	20,0	0,77	Coesivo	Baldi et. al.	209,72	Marsland	0,7

	Argille Limose				1989 Andrus et. al. 2001		1974- Marsland e Powell 1979	
2,4	Argille	17,0	0,95	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	206,99	Marsland 1974- Marsland e Powell 1979	0,6
2,6	Argille - Argille Limose	16,0	0,65	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	207,71	Marsland 1974- Marsland e Powell 1979	0,5
2,8	Argille	12,0	0,6	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	199,8	Marsland 1974- Marsland e Powell 1979	0,4
3	Limi - Argille Sabbiose	18,0	0,54		Baldi et. al. 1989 Andrus et. al. 2001	232,77	Marsland 1974- Marsland e Powell 1979	0,6
3,2	Argille	14,0	0,89	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	210,35	Marsland 1974- Marsland e Powell 1979	0,5
3,4	Argille - Argille Limose	18,0	0,65	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	222,49	Marsland 1974- Marsland e Powell 1979	0,6
3,6	Argille	17,0	1,01	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	222,4	Marsland 1974- Marsland e Powell 1979	0,6
3,8	Argille	20,0	1,19	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	230,69	Marsland 1974- Marsland e Powell 1979	0,7
4	Argille	24,0	1,37	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	239,57	Marsland 1974- Marsland e Powell 1979	0,8
4,2	Argille	27,0	1,61	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	245,87	Marsland 1974- Marsland e Powell 1979	0,9
4,4	Argille	26,0	1,73	Coesivo	Baldi et. al.	245,3	Marsland	0,9

					1989 Andrus et. al. 2001		1974- Marsland e Powell	
4,6	Argille	27,0	1,79	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	248,07	1979 Marsland 1974- Marsland e Powell 1979	0,9
4,8	Argille	32,0	1,61	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	256,91	Marsland 1974- Marsland e Powell 1979	1,1
5	Argille	29,0	1,9	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	253,42	Marsland 1974- Marsland e Powell 1979	1,0
5,2	Argille	35,0	1,85	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	263,31	Marsland 1974- Marsland e Powell 1979	1,2
5,4	Argille	32,0	1,85	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	260,15	Marsland 1974- Marsland e Powell 1979	1,1
5,6	Argille	37,0	1,73	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	268,15	Marsland 1974- Marsland e Powell 1979	1,2
5,8	Argille	39,0	1,96	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	271,84	Marsland 1974- Marsland e Powell 1979	1,3
6	Argille	28,0	1,79	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	257	Marsland 1974- Marsland e Powell 1979	0,9
6,2	Argille	24,0	1,25	Coesivo	Baldi et. al. 1989 Andrus et. al. 2001	250,82	Marsland 1974- Marsland e Powell 1979	0,8
6,4	Limi - Argille Sabbiose	32,0	0,89		Baldi et. al. 1989 Andrus et. al. 2001	289,24	Marsland 1974- Marsland e Powell 1979	1,1
6,6	Argille	24,0	1,37	Coesivo	Baldi et. al.	252,56	Marsland	0,8

					1989		1974-	
					Andrus et.		Marsland e	
					al. 2001		Powell	
							1979	
6,8	Argille	21,0	1,01	Coesivo	Baldi et. al.	247,35	Marsland	0,7
					1989		1974-	
					Andrus et.		Marsland e	
					al. 2001		Powell	
				ļ			1979	
7	Argille -	26,0	0,89	Coesivo	Baldi et. al.	257,95	Marsland	0,9
	Argille				1989		1974-	
	Limose				Andrus et.		Marsland e	
					al. 2001		Powell 1979	
7,2	Argille	21,0	1,19	Coesivo	Baldi et. al.	248,96	Marsland	0,7
7,2	Aigine	21,0	1,17	Cocsivo	1989	240,70	1974-	0,7
					Andrus et.		Marsland e	
					al. 2001		Powell	
							1979	
7,4	Argille	18,0	1,19	Coesivo	Baldi et. al.	242,84	Marsland	0,6
					1989		1974-	
					Andrus et.		Marsland e	
					al. 2001		Powell	
7.6	4 '11	22.0	0.77	G :	D 11' . 1	2516	1979	0.0
7,6	Argille -	23,0	0,77	Coesivo	Baldi et. al. 1989	254,6	Marsland	0,8
	Argille Limose				Andrus et.		1974- Marsland e	
	Lillose				al. 2001		Powell	
					ai. 2001		1979	
7,8	Argille	25,0	1,37	Coesivo	Baldi et. al.	259,26	Marsland	0,8
,,,,	1	,-	1,0 .	2020170	1989		1974-	٠,٥
					Andrus et.		Marsland e	
					al. 2001		Powell	
							1979	

 $\begin{array}{ccc} Vs,\!30 & 124,\!18 & m/s \\ Cu,\!30 & 0,\!61 & Kg/cm^2 \end{array}$

Terreno con spessore non superiore a 20m posto su substrato di riferimento con vs>800 m/s...No

Stima categoria suolo Vs,30

Categoria suolo tipo: CATEGORIA SUOLO TIPO:D

Per definire l'azione sismica di progetto, si valuta l'effetto della risposta sismica locale (RSL) determinando la categoria di sottosuolo specifica del sito.

Individuazione categoria di sottosuolo di riferimento (Tab. 3.2.II e 3.2.III) secondo: Vs,30

Categoria suolo tipo:D

D - Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 m/s e 180 m/s

2. CONSIDERAZIONI CONCLUSIVE

In base alle considerazioni svolte è possibile attribuire PARERE FAVOREVOLE all'intervento in oggetto. Si è infatti verificata l'assenza di controindicazioni sismiche.

3. ALLEGATI

Sede legale, operativa ed amm.va: Via Annibale Zucchini, 69 - 44122 FERRARA tel. 0532/56771 – fax 0532/56119 P IVA e Codice Fiscale n. 00174600387

AZIENDA CON SISTEMA DI GESTIONE INTEGRATO CERTIFICATO DA DNV
UNI EN ISO 9001/2000
—UNI EN ISO 14001

e-mail: info@elletipi.it segreteria@pec.elletipi.it

sito web: www.elletipi.it

Laboratorio Materiali da Costruzione autorizzato con Dec. n. 0000006 del 27/01/2015, art. 59 del D.P.R. 380/2001, Circolare Ministeriale 7617/STC Laboratorio Geotecnico autorizzato con Dec. n. 6572 del 07/10/2014, art. 59 del D.P.R. 380/2001, Circolari Ministeriali 7618/STC Organismo Notificato n° 1308 (DM 826149 del 22/03/2004 del Ministero delle Attività Produttive) rinnovata ai sensi della circ. 305/2011, DM 156/2003

Committente:

PROVINCIA DI MODENA

V.le Martiri della libertà, Modena (MO)

Oggetto:

RAPPORTO METODOLOGICO SU ACQUISIZIONE ED ELABORAZIONE DI DATI SISMICI CON METODO MASW NEI PRESSI DELLA SP 623 NEL COMUNE DI SPILAMBERTO (MO)

Titolo:

RAPPORTO METODOLOGICO

Rapporto di prova: LAB 56440

Emesso:
Dott. Andrea Lembardo

Approvato:
Dott. Fabio Faccia

INDICE

<u>1</u>	<u>INT</u>	<u>RO</u>	DUZIONE	<u> 3</u>
	1.1	Og	getto	3
<u>2</u>	INE)AG	INI SISMICHE CON METODO MASW	<u> 5</u>
	2.1	Pri	ncipi di funzionamento	5
	2.2	Str	rumentazione indagini MASW	6
	2.2	.1	Strumentazione utilizzata	6
	2.2	.2	Software utilizzati	8
	2.3	Ac	quisizione dei dati	9
	2.4	Ela	aborazione dei dati	11
	2.5	Ca	tegoria di suolo con metodo MASW	12
	2.5	.1	- Considerazioni conclusive	13
<u>3</u>	CO	NCI	LUSIONI	14
<u>4</u>	AL	LEG	SATO 1	14

INTRODUZIONE

1.1 **Oggetto**

Su incarico della Committenza, Provincia di Modena, la scrivente società ha eseguito, in data 22/11/2018, due indagini sismiche (File: MASW01 – MASW02) del tipo MASW (Multichannel Analysis of Surface Waves) nei pressi della SP623 nell'area comunale di Spilamberto (MO) (Figura 1).

Figura 1 - Inquadramento geografico. Il poligono in giallo evidenzia l'area oggetto d'indagine (ortofoto satellitare Google Eart 2018).

L'indagine si pone l'obbiettivo di determinare la categoria sismica dei terreni per il calcolo dell'azione sismica di progetto in ottemperanza alle Norme Tecniche per le Costruzioni -D.M.14 gennaio 2008, integrate con la circolare 02/02/09 N° 617 C.S.L.P e alle Norme Tecniche per le Costruzioni (D.M. 17 gennaio 2018) attraverso la stima della velocità di propagazione delle onde di taglio entro i primi 30 m di profondità V_{s,30}, come definito nelle NTC 2008 e del valore di velocità equivalente VS, eq (relativa alla profondità del bedrock sismico) come previsto dalle NTC 2018.

Nello specifico, l'indagine si è articolata nello svolgimento di 2 profili sismici lineari della lunghezza di 69 m ciascuno, con distanza intergeofonica di 3 m ed offset di energizzazione pari a 6 m (Figura 2).

Figura 2 – Ubicazione delle indagini nei pressi della SP 623 a nord del centro abitato di Spilamberto (MO) (ortofoto satellitare Google Eart 2018).

2 INDAGINI SISMICHE CON METODO MASW

2.1 Principi di funzionamento

Il metodo MASW (*Multichannel Analysis of Surface Waves*) è una tecnica di indagine non invasiva che individua il profilo di velocità delle onde di taglio verticali V_S , basandosi sul tempo di arrivo di arrivo delle onde superficiali ai geofoni posti lungo uno stendimento. Il contributo predominante alle onde superficiali è dato dalle onde di Rayleigh che si generano dall'interferenza costruttiva delle onde P ed S polarizzate verticalmente negli strati superficiali, muovendosi con moto ellittico retrogrado con un asse dell'ellisse parallelo alla direzione dell'onda e l'altro parallelo alla superficie libera (interfaccia aria-terreno).

La velocità di propagazione delle onde di Rayleigh è correlata alla rigidezza della porzione interessata dalla propagazione delle onde stesse. In un mezzo stratificato le onde di Rayleigh sono dispersive, cioè onde con diverse lunghezze d'onda si propagano con diverse velocità di fase e velocità di gruppo (Achenbach, J.D., 1999, Aki, K. and Richards, P.G., 1980) o, detto in maniera equivalente, la velocità di fase (o di gruppo) apparente delle onde di Rayleigh dipende dalla frequenza di propagazione. La natura dispersiva delle onde superficiali è correlabile al fatto che onde ad alta frequenza con lunghezza d'onda corta si propagano negli strati più superficiali e quindi danno informazioni sulla parte più superficiale del suolo, invece onde a bassa frequenza si propagano negli strati più profondi e quindi interessano gli strati più profondi del suolo.

Le indagini MASW si distinguono in attive, passive o in una combinazione di entrambi.

Nel metodo attivo le onde superficiali generate in un punto sulla superficie del suolo sono misurate da uno stendimento lineare di sensori. Nel metodo passivo lo stendimento dei sensori può essere sia lineare, sia circolare e si misura il rumore ambientale di fondo esistente.

Il metodo di indagine MASW utilizzato per le presenti indagini è di tipo attivo, in quanto le onde superficiali sono generate in un punto sulla superficie del suolo (tramite energizzazione con mazza battente parallelamente all'array) e misurate da uno stendimento lineare di sensori. Il metodo attivo generalmente consente di ottenere una velocità di fase (o curva di dispersione) sperimentale apparente nel range di frequenze compreso tra 2 - 100 Hz, quindi fornisce informazioni sulla parte più superficiale del suolo, generalmente compresa tra i 10m ed i 50m, in funzione della rigidezza del suolo e delle caratteristiche della sorgente e presenta una maggiore affidabilità per profondità di circa 20 m. Il risultato finale del processo di elaborazione è il profilo verticale delle velocità delle onde S.

2.2 Strumentazione indagini MASW

2.2.1 Strumentazione utilizzata

La strumentazione utilizzata per l'esecuzione delle indagini MASW è composta da (Figura 3 e Figura 4):

- Sistema energizzante: composto da una piastra metallica circolare in acciaio disposta sulla superficie d'indagine e da una massa battente (mazza di 8 Kg), che rappresenta la sorgente (S).
- Sistema di acquisizione dati: è stato utilizzato un sismografo GEODE (GEOMETRICS) a 24 canali. Tale sistema è in grado di registrare su ciascun canale in forma digitale le forme d'onda e di conservarle su memoria di massa dinamica minima a 24 bit. Esso è collegato a ciascuno dei 24 geofoni ed al sensore del trigger. Consente quindi di registrare in forma numerica e visualizzare come tracce su un apposito monitor le vibrazioni a partire dall'impulso inviato dal trigger.
- Cavo per prospezione sismica 24 canali: Cavo sismico per collegamento dei geofoni alla strumentazione costituito da 24 clip che vengono connesse ai geofoni.
- Sistema di ricezione (onde P): formato dallo stendimento di 24 geofoni di tipo elettromagnetico a bobina mobile (oscillazione verticale) con frequenza caratteristica pari a 4.5 Hz. Essi sono in grado di trasformare la velocità di movimento del suolo al passaggio delle onde sismiche artificiali prodotte in segnale elettrico.
- Trigger: si tratta di un geofono starter posizionato in prossimità della sorgente del sistema di energizzazione, che consiste in un circuito elettrico che viene chiuso nell'istante in cui la massa battente colpisce la piastra dando così inizio alla registrazione del segnale da parte dei geofoni. Il trigger permette di fissare il tempo zero di riferimento per il calcolo dei tempi di percorso delle onde generate.
- Computer di campagna: connesso al sistema di acquisizione mediante apposito connettore, utilizzato per visualizzare ed archiviare i dati acquisiti.

Figura 3 - Strumentazione utilizzata: A) Sistema energizzante; B)Sistema di acquisizione; C) Cavo per prospezione sismica 24 canali; D) Sistema di ricezione; E) Computer di campagna.

Figura 4 - - Base sismica per l'acquisizione dei dati.

2.2.2 Software utilizzati

2.2.2.1 Software di acquisizione

Seismodule Controller Software (SCS): è il software d'acquisizione utilizzato che permette la visualizzazione delle tracce dei singoli geofoni, e di regolare diverse impostazioni del sistema quali la geometria dello stendimento, la lunghezza di registrazione, il tempo di campionamento ecc. Nel caso in esame è stato scelto un intervallo di campionamento di 0.125 ms.

2.2.2.2 Software di elaborazione

Easy MASW: software della GeoStru che permette di elaborare il dato grezzo acquisito attraverso operazioni di filtraggio del segnale in modo da aumentare il rapporto segnale/rumore, di applicare la doppia trasformata di Fourier per ottenere lo spettro del segnale da cui ricavare la curva di dispersione, effettuare la modellizzazione dei sismo-strati e ricavare il dato ultimo di V_{S30}. Infine viene prodotta una dettagliata relazione di calcolo completa di elaborati numerici e grafici.

2.3 Acquisizione dei dati

L'acquisizione della linea sismica si è svolta il giorno 22/11/18 nel sito già specificato al Paragrafo 1.1.

In Figura 5 si riporta lo schema generale di acquisizione.

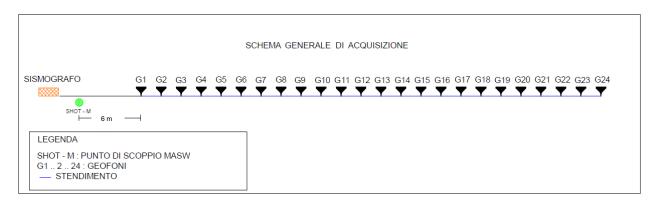


Figura 5 - Schema generale di acquisizione.

Viene di seguito (Figura 6 e Figura 7) riportata l'ubicazione e le caratteristiche geometriche dello stendimento:

- MASW 01 - SP623

Lunghezza stendimento: 69 m – D.I. : 3,00 m – DIREZIONE: WNW-ESE.

Figura 6 - Linea sismica MASW 01 - SP623.

- MASW 02 - SP623

Lunghezza stendimento: 69 m – D.I. : 3,00 m – DIREZIONE: NE-SW.

Figura 7 - Linea sismica MASW 01 - SP623.

2.4 Elaborazione dei dati

Il calcolo della curva di dispersione è stata preceduta da opportune operazioni di *denoising* applicando un filtro passa banda utile ad eliminare tutte le frequenze di disturbo dovute al rumore ambientale e che avrebbero potuto alterare i dati derivanti dalle battute effettuate.

In seguito è stato calcolato lo **spettro V-F** (velocità di fase - frequenza) del sismogramma medio ottenuto dalle operazioni di *stacking* tra i migliori sismogrammi acquisiti.

La fase successiva si è articolata attraverso il *picking* dei massimi spettrali (diagramma **V-F**), ed il processo di inversione finalizzato alla modellizzazione dei sismostrati ed alla determinazione della V_{S30} e V_{Seq} (Figura 8 e Figura 9).

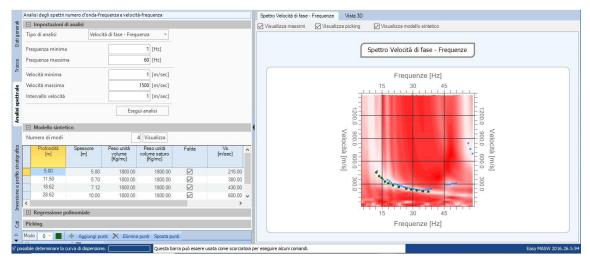


Figura 8 – Esempio di calcolo dello spettro V-F del sismogramma medio ottenuto e filtrato e operazione di *picking*. Nell'esempio viene riportata l'elaborazione relativa alla MASW 01 – SP623.

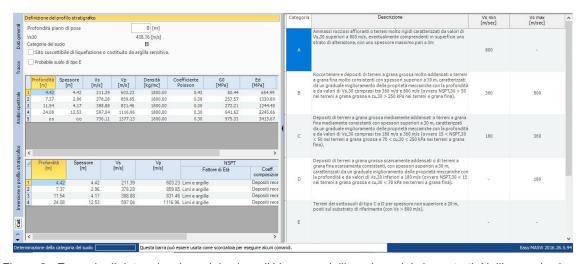


Figura 9 - Esempio di determinazione del valore di Vs₃₀ e modellizzazione dei sismostrati. Nell'esempio viene riportata l'elaborazione relativa alla MASW 01 – SP623.

2.5 Categoria di suolo con metodo MASW

La stima delle velocità di propagazione delle onde di taglio è stata determinata, come descritto precedentemente, in ottemperanza alle Norme Tecniche per le Costruzioni -D.M.14 gennaio 2008, integrate con la circolare 02/02/09 N° 617 C.S.L.P e alle Norme Tecniche per le Costruzioni (D.M. 17 gennaio 2018).

Nel primo caso, il valore di V_S (m/sec) è stato assegnato sulla base della velocità media equivalente di propagazione delle onde di taglio entro 30 m di profondità calcolata come:

$$V_{S30} = \frac{30}{\sum_{i=1,N} \frac{h_i}{V_{S,i}}} = [m/sec]$$

dove V_{S,i} e h_i sono la velocità delle onde di taglio verticali e lo spessore dello strato i-esimo. La classificazione del sottosuolo, effettuata sulla base delle NTC 2018, prevede invece la determinazione della velocità equivalente di propagazione delle onde di taglio, V_{S,eq} (in m/s), secondo l'espressione:

$$V_{S30} = \frac{H}{\sum_{i=1,N} \frac{h_i}{V_{S,i}}} = [m/sec]$$

dove H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da V_S non inferiore a 800 m/s.

Categoria	Descrizione
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di $V_{s,30}$ superiori a 800 m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ compresi tra 360 m/s e 800 m/s (ovvero $N_{SPT,30} > 50$ nei terreni a grana grossa e $c_{u,30} > 250$ kPa nei terreni a grana fina).
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ compresi tra 180 m/s e 360 m/s (ovvero $15 < N_{SPT,30} < 50$ nei terreni a grana grossa e $70 < c_{u,30} < 250$ kPa nei terreni a grana fina).
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ inferiori a 180 m/s (ovvero $N_{SPT,30} < 15$ nei terreni a grana grossa e $c_{u,30} < 70$ kPa nei terreni a grana fina).
E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m , posti sul substrato di riferimento $(\cos V_s > 800 \text{ m/s})$.

Data

2.5.1 - Considerazioni conclusive

Dall'elaborazione effettuata sono stati ricavati per entrambi i siti di indagine (MASW 01 e MASW 02) $n^{\circ}5$ sismostrati (Tabella 1 e Tabella 2), caratterizzati da una V_s crescente con la profondità.

Sismostrato	Vs	ρ	Н	Z	٧
[n°]	[m/sec]	[kg/m³]	[m]	[m]	[-]
1	211	1800	4.42	4.42	0.43
2	378	1800	2.96	7.37	0.38
3	388	1800	4.17	11.54	0.36
4	597	1800	12.53	24.08	0.30
5	736	1800	INF.	INF.	0.30
		*VS ₃₀ = 438 m			

Tabella 1 – Tabella di restituzione finale in cui sono indicati i singoli parametri ottenuti per la MASW 01.

Vs	ρ	Н	Z	٧
[m/sec]	[kg/m³]	[m]	[m]	[-]
204	1800	3.94	3.94	0.43
316	1800	6.49	10.43	0.38
436	1800	5.81	16.24	0.36
655	1800	10.08	26.32	0.30
720	1800	INF.	INF.	0.30
	*VS ₃₀ = 407 m			
	[m/sec] 204 316 436 655 720	[m/sec] [kg/m³] 204 1800 316 1800 436 1800 655 1800 720 1800 *VS ₃₀ = 407 m	[m/sec] [kg/m³] [m] 204 1800 3.94 316 1800 6.49 436 1800 5.81 655 1800 10.08 720 1800 INF. *VS30 = 407 m/s	[m/sec] [kg/m³] [m] [m] 204 1800 3.94 3.94 316 1800 6.49 10.43 436 1800 5.81 16.24 655 1800 10.08 26.32 720 1800 INF. INF. *VS30 = 407 m/s

Tabella 2 – Tabella di restituzione finale in cui sono indicati i singoli parametri ottenuti per la MASW 02.

L'analisi della dispersione delle onde di Rayleigh a partire dai dati di sismica attiva (MASW) ha consentito di determinare il profilo verticale della $V_{\rm S}$ considerando come riferimento il piano campagna z=0 m. Dai valori di $V_{\rm s}$ ottenuti, mediati in funzione dei singoli spessori, è stato ricavato un valore di $V_{\rm s30}$ pari a 438 m/s e 407 m/s, rispettivamente per il primo e il secondo sito di indagine (MASW 01 e MASW 02).

Pertanto, rispetto le norme tecniche per le costruzioni (DM 14 gennaio 2008 e D.M. 17 gennaio 2018) il sito in esame rientra quindi nella **categoria di sottosuolo B**.

Tali valori risultano in linea con quelli esistenti in bibliografia per l'area di "Spilamberto Nord" (Microzonazione Sismica: Carta delle Velocità delle onde di taglio S – Regione Emilia Romagna).

3 CONCLUSIONI

Considerate le caratteristiche geologiche dell'area e le informazioni derivanti dal materiale bibliografico a disposizione è stato possibile definire una caratterizzazione sismostratigrafica del sito d'indagine fino alla profondità di 30 m.

Per una corretta consultazione dei risultati presentati è tuttavia opportuno fare appello al concetto di indagine indiretta, ovvero: "l'utilizzo di apparecchiature di superficie che, mediante l'emissione e la ricezione di segnali di diversa natura, permettono l'interpretazione della colonna stratigrafica". Ciò implica che nessuna indagine indiretta possa avere un carattere quantitativo comparabile con approcci diretti, in quanto l'interpretazione è vincolata a variabili non controllabili e spesso non riscontrabili direttamente in superficie. La metodologia utilizzata nell'elaborazione dei dati si basa infatti sulla determinazione delle velocità di propagazione delle onde sismiche e degli spessori dei sismostrati a partire da una modellazione matematica soggetta ad una componente interpretativa dei dati ottenuti.

L'elaborazione relativa all'intervento eseguito è stata riportata nell'elaborato allegato alla presente relazione.

4 ALLEGATO 1

ACQUISIZIONE ED ELABORAZIONE DI DATI SISMICI CON METODO MASW (RAPPORTO DI PROVA – REV.00).

- MASW 01 SP623 Prot Lab. 56441.
- MASW02_SP623 Prot Lab. 56442.

Sede legale, operativa, amm.va: via Zucchini, 69 - 44100 FERRARA P.IVA e Codice Fiscale n.00174600387 sito: www.elletipi.it - email: info@elletipi.it

Azienda con Sistemi di Gestione certificati da Certiquality Qualità Ambiente Sicurezza UNI EN ISO 9001:2008 UNI EN ISO 14001:2004 BS OHSAS 18001:2007

Laboratorio Geotecnico autorizzato con Dec. n. 6572 del 07/10/2014, art. 59 del D.P.R. 380/2001, Circolari Ministeriali 7618/STC

RAPPORTO DI PROVA ACQUISIZIONE ED ELABORAZIONE DI DATI SISMICI CON METODO MASW

COMMITTENTE: PROVINCIA DI MODENA - V.le Martiri della libertà, Modena (MO)

LOCALITA': SP 623 - Comune di Spilamberto (MO)
PROVA: INDAGINE GEOFISICA MASW 01

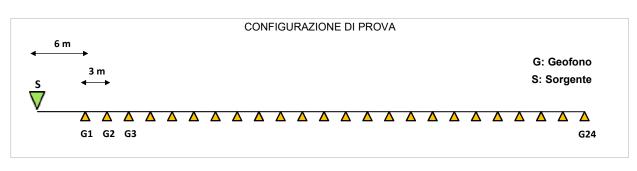
DATA PROVA: **22/11/2018**

Prot.LAB **56441** rev.00 del: 27/11/2018 COMM: 18192/18

PROVA MASW 01

POSIZIONE PUNTO DI SCOPPIO (Gradi decimali)

	G1	G24		
Latitudine :	44.555301°	44.555150°		
Longitudine :	11.001193°	11.002019°		
Lunghezza:	69 m			
Direzione :	WNW-ESE			


Sismografo: Geometrics geode N° geofoni: 24(Geospace 4,5Hz) Distanza Intergeofonica: 3 m Offset: 6 m Intervallo campionamento: 0.125 ms

SCHEMA DI ACQUISIZIONE

Stendimento Sismico Masw

ELABORATO
Dott. Andrea Lombardo

VERIFICATO
Dott. Fabio Faccia

Sede legale, operativa, amm.va: via Zucchini, 69 - 44100 FERRARA P.IVA e Codice Fiscale n.00174600387 sito: www.elletipi.it - email: info@elletipi.it

Azienda con Sistemi di Gestione certificati da Certiquality Qualità Ambiente Sicurezza UNI EN ISO 9001:2008 UNI EN ISO 14001:2004 BS OHSAS 18001:2007

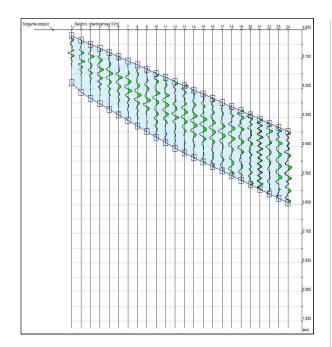
Laboratorio Geotecnico autorizzato con Dec. n. 6572 del 07/10/2014, art. 59 del D.P.R. 380/2001, Circolari Ministeriali 7618/STC

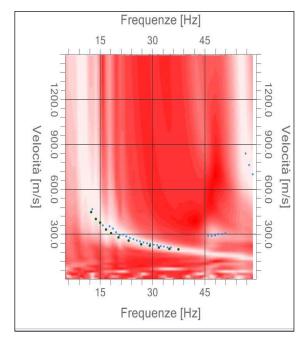
RAPPORTO DI PROVA ACQUISIZIONE ED ELABORAZIONE DI DATI SISMICI CON METODO MASW

COMMITTENTE: PROVINCIA DI MODENA - V.le Martiri della libertà, Modena (MO)

LOCALITA': SP 623 - Comune di Spilamberto (MO)
PROVA: INDAGINE GEOFISICA MASW 01

DATA PROVA: 22/11/2018


Prot.LAB **56441** rev.00 del: 27/11/2018 COMM: 18192/18


PROVA MASW 01

SPECIFICHE DI ELABORAZIONE

Software Acquisizione:	Seismodule Controller		
Software Elaborazione:	Easy MASW		
Sismogrammi Acquisiti:	10		

ELABORATO
Dott. Andrea Londbardo

VERIFICATO

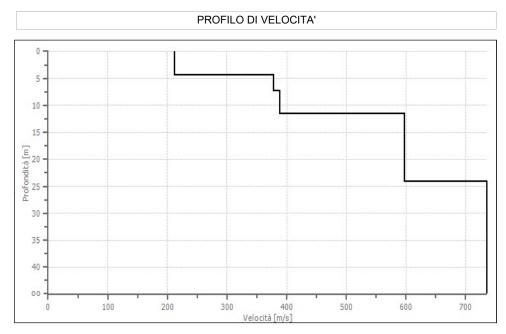
Dott. Fabio Faccia

Sede legale, operativa, amm.va: via Zucchini, 69 - 44100 FERRARA P.IVA e Codice Fiscale n.00174600387 sito: www.elletipi.it - email: info@elletipi.it

Azienda con Sistemi di Gestione certificati da Certiquality Qualità Ambiente Sicurezza UNI EN ISO 9001:2008 UNI EN ISO 14001:2004 BS OHSAS 18001:2007

Laboratorio Geotecnico autorizzato con Dec. n. 6572 del 07/10/2014, art. 59 del D.P.R. 380/2001, Circolari Ministeriali 7618/STC

RAPPORTO DI PROVA ACQUISIZIONE ED ELABORAZIONE DI DATI SISMICI CON METODO MASW


COMMITTENTE: PROVINCIA DI MODENA - V.Ie Martiri della libertà, Modena (MO)

LOCALITA': SP 623 - Comune di Spilamberto (MO)
PROVA: INDAGINE GEOFISICA MASW 01

DATA PROVA: **22/11/2018**

Prot.LAB **56441** rev.00 del: 27/11/2018 COMM: 18192/18

PROVA MASW 01

Sismostrato	Vs	ρ	Н	Z	V
[n°]	[m/sec]	[kg/m ³]	[m]	[m]	[-]
1	211	1800	4.42	4.42	0.43
2	378	1800	2.96	7.37	0.38
3	388	1800	4.17	11.54	0.36
4	597	1800	12.53	24.08	0.30
5	736	1800	INF.	INF.	0.30
		*VS ₃₀ = 438 n	n/s		
	CATEGOR	RIA SUOLO (N	TC-18): B		

Dati Calcolati

Vs: Velocità onde S nel simostrato H: Spessore del sismostrato

Z: Profondità dalla superficie d'acuisizione del sismostrato

*VS_{30:}
$$\frac{30}{\sum [h_i/V_i]}$$

ELABORATO
Dott. Andrea Combardo

Dati stimati

ρ: Densità

v: Coefficiente di Poisson

VERIFICATO

Dott. Fabio Facola

Sede legale, operativa, amm.va: via Zucchini, 69 - 44100 FERRARA P.IVA e Codice Fiscale n.00174600387 sito: www.elletipi.it - email: info@elletipi.it

Azienda con Sistemi di Gestione certificati da Certiquality Qualità Ambiente Sicurezza UNI EN ISO 9001:2008 UNI EN ISO 14001:2004 BS OHSAS 18001:2007

Laboratorio Geotecnico autorizzato con Dec. n. 6572 del 07/10/2014, art. 59 del D.P.R. 380/2001, Circolari Ministeriali 7618/STC

RAPPORTO DI PROVA ACQUISIZIONE ED ELABORAZIONE DI DATI SISMICI CON METODO MASW

COMMITTENTE: PROVINCIA DI MODENA - V.le Martiri della libertà, Modena (MO)

LOCALITA': SP 623 - Comune di Spilamberto (MO)
PROVA: INDAGINE GEOFISICA MASW 02

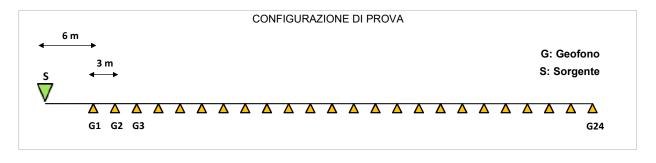
DATA PROVA: **22/11/2018**

Prot.LAB **56442** rev.00 del: 27/11/2018 COMM: 18192/18

PROVA MASW 02

POSIZIONE PUNTO DI SCOPPIO (Gradi decimali)

	G1	G24		
Latitudine :	44.559454°	44.558958°		
Longitudine :	10.998733°	10.998220°		
Lunghezza:	69 m			
Direzione :	NE-SW			


MASW_02_SP623

Stendimento Sismico Masw

SCHEMA DI ACQUISIZIONE

Sismografo:	Geometrics geode		
N° geofoni:	24(Geospace 4,5Hz)		
Distanza Intergeofonica:	3 m		
Offset:	6 m		
Intervallo campionamento:	0.125 ms		

ELABORATO
Dott. Andrea Lombaydo

VERIFICATO/ Dott. Fabio Faccia

Sede legale, operativa, amm.va: via Zucchini, 69 - 44100 FERRARA P.IVA e Codice Fiscale n.00174600387 sito: www.elletipi.it - email: info@elletipi.it

Azienda con Sistemi di Gestione certificati da Certiquality Qualità Ambiente Sicurezza UNI EN ISO 9001:2008 UNI EN ISO 14001:2004 BS OHSAS 18001:2007

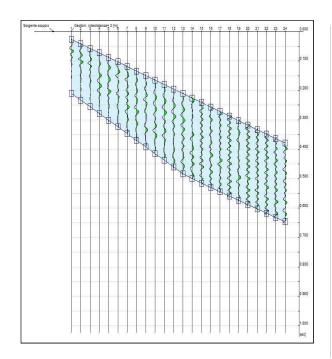
Laboratorio Geotecnico autorizzato con Dec. n. 6572 del 07/10/2014, art. 59 del D.P.R. 380/2001, Circolari Ministeriali 7618/STC

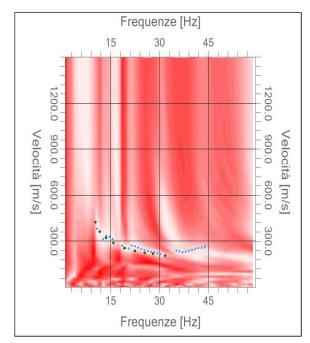
RAPPORTO DI PROVA ACQUISIZIONE ED ELABORAZIONE DI DATI SISMICI CON METODO MASW

COMMITTENTE: PROVINCIA DI MODENA - V.le Martiri della libertà, Modena (MO)

LOCALITA': SP 623 - Comune di Spilamberto (MO)
PROVA: INDAGINE GEOFISICA MASW 02

DATA PROVA: 22/11/2018


Prot.LAB **56442** rev.00 del: 27/11/2018 COMM: 18192/18


PROVA MASW 02

SPECIFICHE DI ELABORAZIONE

Software Acquisizione:	Seismodule Controller		
Software Elaborazione:	Easy MASW		
Sismogrammi Acquisiti:	12		

ELABORATO
Dott. Andrea Lombardo

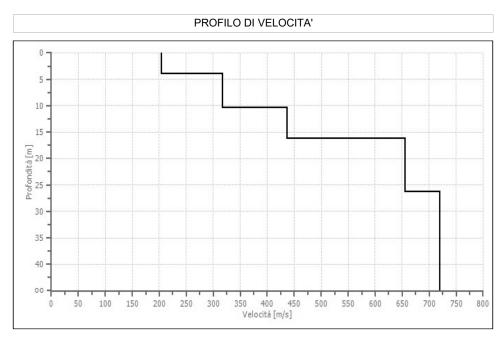
VERIFICATO/ Dott. Fabio Faccia

Sede legale, operativa, amm.va: via Zucchini, 69 - 44100 FERRARA P.IVA e Codice Fiscale n.00174600387 sito: www.elletipi.it - email: info@elletipi.it

Azienda con Sistemi di Gestione certificati da Certiquality Qualità Ambiente Sicurezza UNI EN ISO 9001:2008 UNI EN ISO 14001:2004 BS OHSAS 18001:2007

Laboratorio Geotecnico autorizzato con Dec. n. 6572 del 07/10/2014, art. 59 del D.P.R. 380/2001, Circolari Ministeriali 7618/STC

RAPPORTO DI PROVA ACQUISIZIONE ED ELABORAZIONE DI DATI SISMICI CON METODO MASW


COMMITTENTE: PROVINCIA DI MODENA - V.le Martiri della libertà, Modena (MO)

LOCALITA': SP 623 - Comune di Spilamberto (MO)
PROVA: INDAGINE GEOFISICA MASW 02

DATA PROVA: 22/11/2018

Prot.LAB 56442 rev.00 del: 27/11/2018 COMM: 18192/18

PROVA MASW 02

Sismostrato	Vs	ρ	Н	Z	V
[n°]	[m/sec]	[kg/m ³]	[m]	[m]	[-]
1	204	1800	3.94	3.94	0.43
2	316	1800	6.49	10.43	0.38
3	436	1800	5.81	16.24	0.36
4	655	1800	10.08	26.32	0.30
5	720	1800	INF.	INF.	0.30
		*VS ₃₀ = 407 n	n/s		
	CATEGO	RIA SUOLO (N	TC-18): B		

Dati Calcolati

Vs: Velocità onde S nel simostrato H: Spessore del sismostrato

Z: Profondità dalla superficie d'acuisizione del sismostrato

*VS_{30:}
$$\frac{30}{\sum [h_i/V_i]}$$

ELABORATO
Dott. Andrea Lombardo

Dati stimati

ρ: Densità

v: Coefficiente di Poisson

VERIFICATO/ Dott. Fabio Faccia